Spaces:
Running
on
Zero
Running
on
Zero
""" PyTorch NLLB CLIP model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from configuration_nllb_clip import NLLBCLIPConfig, NLLBCLIPTextConfig | |
from torch import nn | |
from transformers import CLIPVisionConfig | |
from transformers.activations import ACT2FN | |
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled | |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ModelOutput, logging | |
logger = logging.get_logger(__name__) | |
# contrastive loss function, adapted from | |
# https://sachinruk.github.io/blog/2021-03-07-clip.html | |
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: | |
return nn.functional.cross_entropy( | |
logits, torch.arange(len(logits), device=logits.device) | |
) | |
def clip_loss(similarity: torch.Tensor) -> torch.Tensor: | |
caption_loss = contrastive_loss(similarity) | |
image_loss = contrastive_loss(similarity.t()) | |
return (caption_loss + image_loss) / 2.0 | |
class CLIPVisionEmbeddings(nn.Module): | |
def __init__(self, config: CLIPVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) | |
self.patch_embedding = nn.Conv2d( | |
in_channels=config.num_channels, | |
out_channels=self.embed_dim, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
bias=False, | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.num_positions = self.num_patches + 1 | |
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
self.register_buffer( | |
"position_ids", | |
torch.arange(self.num_positions).expand((1, -1)), | |
persistent=False, | |
) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
batch_size = pixel_values.shape[0] | |
target_dtype = self.patch_embedding.weight.dtype | |
patch_embeds = self.patch_embedding( | |
pixel_values.to(dtype=target_dtype) | |
) # shape = [*, width, grid, grid] | |
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
class_embeds = self.class_embedding.expand(batch_size, 1, -1) | |
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
embeddings = embeddings + self.position_embedding(self.position_ids) | |
return embeddings | |
class CLIPAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return ( | |
tensor.view(bsz, seq_len, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
causal_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
bsz, tgt_len, embed_dim = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scale | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
# apply the causal_attention_mask first | |
if causal_attention_mask is not None: | |
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" | |
f" {causal_attention_mask.size()}" | |
) | |
attn_weights = ( | |
attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
+ causal_attention_mask | |
) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = ( | |
attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
+ attention_mask | |
) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if output_attentions: | |
# this operation is a bit akward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view( | |
bsz, self.num_heads, tgt_len, src_len | |
) | |
attn_weights = attn_weights_reshaped.view( | |
bsz * self.num_heads, tgt_len, src_len | |
) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout( | |
attn_weights, p=self.dropout, training=self.training | |
) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped | |
class CLIPMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class CLIPEncoderLayer(nn.Module): | |
def __init__(self, config: NLLBCLIPConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = CLIPAttention(config) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = CLIPMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
causal_attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
`(config.encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class CLIPEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`CLIPEncoderLayer`]. | |
Args: | |
config: CLIPConfig | |
""" | |
def __init__(self, config: NLLBCLIPConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList( | |
[CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
causal_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Causal mask for the text model. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(encoder_layer), | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, encoder_states, all_attentions] | |
if v is not None | |
) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=encoder_states, | |
attentions=all_attentions, | |
) | |
class CLIPVisionTransformer(nn.Module): | |
def __init__(self, config: CLIPVisionConfig): | |
super().__init__() | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = CLIPVisionEmbeddings(config) | |
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.encoder = CLIPEncoder(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
hidden_states = self.embeddings(pixel_values) | |
hidden_states = self.pre_layrnorm(hidden_states) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
pooled_output = last_hidden_state[:, 0, :] | |
pooled_output = self.post_layernorm(pooled_output) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class NLLBCLIPOutput(ModelOutput): | |
""" | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
Contrastive loss for image-text similarity. | |
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): | |
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text | |
similarity scores. | |
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): | |
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image | |
similarity scores. | |
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`]. | |
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`]. | |
text_model_output(`BaseModelOutputWithPooling`): | |
The output of the [`CLIPTextModel`]. | |
vision_model_output(`BaseModelOutputWithPooling`): | |
The output of the [`CLIPVisionModel`]. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits_per_image: torch.FloatTensor = None | |
logits_per_text: torch.FloatTensor = None | |
text_embeds: torch.FloatTensor = None | |
image_embeds: torch.FloatTensor = None | |
text_model_output: BaseModelOutputWithPooling = None | |
vision_model_output: BaseModelOutputWithPooling = None | |
def to_tuple(self) -> Tuple[Any]: | |
return tuple( | |
self[k] | |
if k not in ["text_model_output", "vision_model_output"] | |
else getattr(self, k).to_tuple() | |
for k in self.keys() | |
) | |
class M2M100Attention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return ( | |
tensor.view(bsz, seq_len, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
# `past_key_value[0].shape[2] == key_value_states.shape[1]` | |
# is checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
if ( | |
is_cross_attention | |
and past_key_value is not None | |
and past_key_value[0].shape[2] == key_value_states.shape[1] | |
): | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.reshape(*proj_shape) | |
value_states = value_states.reshape(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = ( | |
attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
+ attention_mask | |
) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( | |
bsz, self.num_heads, tgt_len, src_len | |
) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view( | |
bsz, self.num_heads, tgt_len, src_len | |
) | |
attn_weights = attn_weights_reshaped.view( | |
bsz * self.num_heads, tgt_len, src_len | |
) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout( | |
attn_weights, p=self.dropout, training=self.training | |
) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->M2M100 | |
class M2M100EncoderLayer(nn.Module): | |
def __init__(self, config: NLLBCLIPConfig): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = M2M100Attention( | |
embed_dim=self.embed_dim, | |
num_heads=config.encoder_attention_heads, | |
dropout=config.attention_dropout, | |
) | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
layer_head_mask: torch.Tensor, | |
output_attentions: bool = False, | |
) -> torch.Tensor: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
hidden_states, attn_weights, _ = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout( | |
hidden_states, p=self.dropout, training=self.training | |
) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout( | |
hidden_states, p=self.activation_dropout, training=self.training | |
) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout( | |
hidden_states, p=self.dropout, training=self.training | |
) | |
hidden_states = residual + hidden_states | |
if hidden_states.dtype == torch.float16 and ( | |
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp( | |
hidden_states, min=-clamp_value, max=clamp_value | |
) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill( | |
inverted_mask.to(torch.bool), torch.finfo(dtype).min | |
) | |
def create_position_ids_from_input_ids( | |
input_ids, padding_idx, past_key_values_length=0 | |
): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
are ignored. This is modified from fairseq's `utils.make_positions`. | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
incremental_indices = ( | |
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length | |
) * mask | |
return incremental_indices.long() + padding_idx | |
class M2M100SinusoidalPositionalEmbedding(nn.Module): | |
"""This module produces sinusoidal positional embeddings of any length.""" | |
def __init__( | |
self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None | |
): | |
super().__init__() | |
self.offset = 2 | |
self.embedding_dim = embedding_dim | |
self.padding_idx = padding_idx | |
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) | |
def make_weights( | |
self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None | |
): | |
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) | |
if hasattr(self, "weights"): | |
# in forward put the weights on the correct dtype and device of the param | |
emb_weights = emb_weights.to( | |
dtype=self.weights.dtype, device=self.weights.device | |
) | |
self.register_buffer("weights", emb_weights, persistent=False) | |
def get_embedding( | |
num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None | |
): | |
""" | |
Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of | |
"Attention Is All You Need". | |
""" | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) | |
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze( | |
1 | |
) * emb.unsqueeze(0) | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view( | |
num_embeddings, -1 | |
) | |
if embedding_dim % 2 == 1: | |
# zero pad | |
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) | |
if padding_idx is not None: | |
emb[padding_idx, :] = 0 | |
return emb.to(torch.get_default_dtype()) | |
def forward( | |
self, | |
input_ids: torch.Tensor = None, | |
inputs_embeds: torch.Tensor = None, | |
past_key_values_length: int = 0, | |
): | |
if input_ids is not None: | |
bsz, seq_len = input_ids.size() | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = create_position_ids_from_input_ids( | |
input_ids, self.padding_idx, past_key_values_length | |
).to(input_ids.device) | |
else: | |
bsz, seq_len = inputs_embeds.size()[:-1] | |
position_ids = self.create_position_ids_from_inputs_embeds( | |
inputs_embeds, past_key_values_length | |
) | |
# expand embeddings if needed | |
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length | |
if max_pos > self.weights.size(0): | |
self.make_weights( | |
max_pos + self.offset, self.embedding_dim, self.padding_idx | |
) | |
return ( | |
self.weights.index_select(0, position_ids.view(-1)) | |
.view(bsz, seq_len, self.weights.shape[-1]) | |
.detach() | |
) | |
def create_position_ids_from_inputs_embeds( | |
self, inputs_embeds, past_key_values_length | |
): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
Args: | |
inputs_embeds: torch.Tensor | |
Returns: torch.Tensor | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, | |
sequence_length + self.padding_idx + 1, | |
dtype=torch.long, | |
device=inputs_embeds.device, | |
) | |
return ( | |
position_ids.unsqueeze(0).expand(input_shape).contiguous() | |
+ past_key_values_length | |
) | |
class M2M100Encoder(PreTrainedModel): | |
""" | |
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
[`M2M100EncoderLayer`]. | |
Args: | |
config: M2M100Config | |
embed_tokens (nn.Embedding): output embedding | |
""" | |
def __init__( | |
self, config: NLLBCLIPConfig, embed_tokens: Optional[nn.Embedding] = None | |
): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.encoder_layerdrop | |
embed_dim = config.d_model | |
self.padding_idx = config.pad_token_id | |
self.max_source_positions = config.max_position_embeddings | |
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) | |
if embed_tokens is not None: | |
self.embed_tokens.weight = embed_tokens.weight | |
self.embed_positions = M2M100SinusoidalPositionalEmbedding( | |
config.max_position_embeddings, | |
embed_dim, | |
self.padding_idx, | |
) | |
self.layers = nn.ModuleList( | |
[M2M100EncoderLayer(config) for _ in range(config.encoder_layers)] | |
) | |
self.layer_norm = nn.LayerNorm(config.d_model) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale | |
embed_pos = self.embed_positions(input_ids, inputs_embeds) | |
embed_pos = embed_pos.to(inputs_embeds.device) | |
hidden_states = inputs_embeds + embed_pos | |
hidden_states = nn.functional.dropout( | |
hidden_states, p=self.dropout, training=self.training | |
) | |
# expand attention_mask | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
if head_mask.size()[0] != len(self.layers): | |
raise ValueError( | |
f"The head_mask should be specified for {len(self.layers)} layers, but it is for" | |
f" {head_mask.size()[0]}." | |
) | |
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = torch.rand([]) | |
skip_the_layer = ( | |
True | |
if self.training and (dropout_probability < self.layerdrop) | |
else False | |
) | |
if not skip_the_layer or deepspeed_zero3_is_enabled: | |
# under deepspeed zero3 all gpus must run in sync | |
if self.gradient_checkpointing and self.training: | |
# create gradient checkpointing function | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(encoder_layer), | |
hidden_states, | |
attention_mask, | |
(head_mask[idx] if head_mask is not None else None), | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
layer_head_mask=( | |
head_mask[idx] if head_mask is not None else None | |
), | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if skip_the_layer: | |
layer_outputs = (None, None) | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, encoder_states, all_attentions] | |
if v is not None | |
) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=encoder_states, | |
attentions=all_attentions, | |
) | |
class CLIPTextTransformer(nn.Module): | |
def __init__(self, config: NLLBCLIPTextConfig): | |
super().__init__() | |
self.config = config | |
embed_dim = config.hidden_size | |
self.encoder = M2M100Encoder(config) | |
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
# For `pooled_output` computation | |
self.eos_token_id = config.eos_token_id | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
if input_ids is None: | |
raise ValueError("You have to specify input_ids") | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.final_layer_norm(last_hidden_state) | |
pooled_output = last_hidden_state[ | |
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), | |
0, | |
] | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class NLLBCLIPModel(PreTrainedModel): | |
config_class = NLLBCLIPConfig | |
def __init__(self, config: NLLBCLIPConfig): | |
super().__init__(config) | |
if not isinstance(config.text_config, NLLBCLIPTextConfig): | |
raise ValueError( | |
"config.text_config is expected to be of type CLIPTextConfig but is of type" | |
f" {type(config.text_config)}." | |
) | |
if not isinstance(config.vision_config, CLIPVisionConfig): | |
raise ValueError( | |
"config.vision_config is expected to be of type CLIPVisionConfig but is of type" | |
f" {type(config.vision_config)}." | |
) | |
text_config = config.text_config | |
vision_config = config.vision_config | |
self.projection_dim = config.projection_dim | |
self.text_embed_dim = text_config.hidden_size | |
self.vision_embed_dim = vision_config.hidden_size | |
self.text_model = CLIPTextTransformer(text_config) | |
self.vision_model = CLIPVisionTransformer(vision_config) | |
self.visual_projection = nn.Linear( | |
self.vision_embed_dim, self.projection_dim, bias=False | |
) | |
self.text_projection = nn.Linear( | |
self.text_embed_dim, self.projection_dim, bias=False | |
) | |
self.logit_scale = nn.Parameter( | |
torch.tensor(self.config.logit_scale_init_value) | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_text_features( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
applying the projection layer to the pooled output of [`CLIPTextModel`]. | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, CLIPModel | |
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
>>> text_features = model.get_text_features(**inputs) | |
```""" | |
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = text_outputs[1] | |
text_features = self.text_projection(pooled_output) | |
return text_features | |
def get_image_features( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by | |
applying the projection layer to the pooled output of [`CLIPVisionModel`]. | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, CLIPModel | |
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, return_tensors="pt") | |
>>> image_features = model.get_image_features(**inputs) | |
```""" | |
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
vision_outputs = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = vision_outputs[1] # pooled_output | |
image_features = self.visual_projection(pooled_output) | |
return image_features | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
return_loss: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, NLLBCLIPOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, CLIPModel | |
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor( | |
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True | |
... ) | |
>>> outputs = model(**inputs) | |
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score | |
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities | |
```""" | |
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
vision_outputs = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
image_embeds = vision_outputs[1] | |
image_embeds = self.visual_projection(image_embeds) | |
text_embeds = text_outputs[1] | |
text_embeds = self.text_projection(text_embeds) | |
# normalized features | |
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) | |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
# cosine similarity as logits | |
logit_scale = self.logit_scale.exp() | |
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale | |
logits_per_image = logits_per_text.t() | |
loss = None | |
if return_loss: | |
loss = clip_loss(logits_per_text) | |
if not return_dict: | |
output = ( | |
logits_per_image, | |
logits_per_text, | |
text_embeds, | |
image_embeds, | |
text_outputs, | |
vision_outputs, | |
) | |
return ((loss,) + output) if loss is not None else output | |
return NLLBCLIPOutput( | |
loss=loss, | |
logits_per_image=logits_per_image, | |
logits_per_text=logits_per_text, | |
text_embeds=text_embeds, | |
image_embeds=image_embeds, | |
text_model_output=text_outputs, | |
vision_model_output=vision_outputs, | |
) | |