testing / app.py
mery22's picture
Update app.py
1fe0c9e verified
raw
history blame
4.45 kB
import os
import csv
import streamlit as st
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain, RetrievalQA
from huggingface_hub import login
# Login to Hugging Face
login(token=st.secrets["HF_TOKEN"])
# Load FAISS index
db = FAISS.load_local(
"faiss_index", HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2'),
allow_dangerous_deserialization=True
)
# Create retriever
retriever = db.as_retriever(
search_type="mmr",
search_kwargs={'k': 1}
)
# Define prompt template
prompt_template = """
### [INST]
Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH
Analyse carefully the context and provide a direct answer based on the context. If the user said Bonjour or Hello your only answer will be Hi! comment puis-je vous aider?
Answer in french only
{context}
Vous devez répondre aux questions en français.
### QUESTION:
{question}
[/INST]
Answer in french only
Vous devez répondre aux questions en français.
"""
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Create LLM model
mistral_llm = HuggingFaceEndpoint(
repo_id=repo_id, max_length=2048, temperature=0.05, huggingfacehub_api_token=st.secrets["HF_TOKEN"]
)
# Create prompt and LLM chain
prompt = PromptTemplate(
input_variables=["question"],
template=prompt_template,
)
llm_chain = LLMChain(llm=mistral_llm, prompt=prompt)
# Create QA chain
qa = RetrievalQA.from_chain_type(
llm=mistral_llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt},
)
# Streamlit UI setup
st.set_page_config(page_title="Alter-IA Chat", page_icon="🤖")
# Define function to handle user input and display chatbot response
def chatbot_response(user_input):
response = qa.run(user_input)
return response
# Define function to save feedback to CSV
def save_feedback(question, response, rating, comment):
filename = 'feedback.csv'
file_exists = os.path.isfile(filename)
with open(filename, 'a', newline='', encoding='utf-8') as csvfile:
fieldnames = ['question', 'response', 'rating', 'comment']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow({'question': question, 'response': response, 'rating': rating, 'comment': comment})
# Create columns for logos
col1, col2, col3 = st.columns([2, 3, 2])
with col1:
st.image("Design 3_22.png", width=150, use_column_width=True)
with col3:
st.image("Altereo logo 2023 original - eau et territoires durables.png", width=150, use_column_width=True)
# Add CSS for styling
st.markdown("""
<style>
.centered-text {
text-align: center;
}
.centered-orange-text {
text-align: center;
color: darkorange;
}
</style>
""", unsafe_allow_html=True)
# Center and color text
st.markdown('<h3 class="centered-text">🤖 AlteriaChat 🤖 </h3>', unsafe_allow_html=True)
st.markdown('<p class="centered-orange-text">"Votre Réponse à Chaque Défi Méthodologique "</p>', unsafe_allow_html=True)
# Input and button for user interaction
user_input = st.text_input("You:", "")
submit_button = st.button("Ask 📨")
if submit_button:
if user_input.strip() != "":
bot_response = chatbot_response(user_input)
st.markdown("### Bot:")
st.text_area("", value=bot_response, height=600)
# Feedback Section
st.markdown("### Évaluation de la réponse")
rating = st.slider("Rating (1 to 5)", 1, 5, 3)
comment = st.text_area("Your comment:", "")
if st.button("Submit Feedback"):
if comment.strip() != "":
save_feedback(user_input, bot_response, rating, comment)
st.success("Thank you for your feedback!")
else:
st.warning("⚠️ Please enter a comment.")
else:
st.warning("⚠️ Please enter a message.")
# Motivational quote at the bottom
st.markdown("---")
st.markdown("La collaboration est la clé du succès. Chaque question trouve sa réponse, chaque défi devient une opportunité.")