import gradio as gr
import pandas as pd
from css_html_js import custom_css
demo = gr.Blocks(css=custom_css)
TITLE = """
🇲🇾 Malay LLM Leaderboard
"""
INTRODUCTION_TEXT = """
📐 The 🇲🇾 Malay LLM Leaderboard aims to track, rank and evaluate open LLMs on Malay tasks.\n
🤗 All notebooks at https://github.com/mesolitica/llm-benchmarks, feel free to submit your own score at https://huggingface.co/spaces/mesolitica/malay-llm-leaderboard/discussions with link to the notebook.
## Dataset
📈 We evaluate models based on 3 datasets,
1. BM-PT3 Paper 1, contains 54 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/BM-pt3
2. Tatabahasa, contains 349 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/tatabahasabm.tripod.com
3. Translated IndoNLI to Malay, tested on `test_expert` dataset, https://huggingface.co/datasets/mesolitica/translated-indonli
"""
data = [
{
'model': 'gpt-3.5-turbo-0613',
'BM-PT3 0-shot': 36.53846153846153,
'BM-PT3 1-shot': 28.846153846153843,
'BM-PT3 3-shots': 24.528301886792452,
'Tatabahasa 0-shot': 59.530791788856305,
'Tatabahasa 1-shot': 60.80691642651297,
'Tatabahasa 3-shots': 63.03724928366762,
},
{
'model': 'gpt-4-1106-preview',
'Tatabahasa 0-shot': 75.64469914040114,
'Tatabahasa 1-shot': 73.63896848137536,
'Tatabahasa 3-shots': 75.64469914040114,
},
{
'model': '[llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf)',
'Tatabahasa 0-shot': 24.355300859598856,
'Tatabahasa 1-shot': 28.08022922636103,
'Tatabahasa 3-shots': 24.641833810888254,
},
{
'model': '[malaysian-llama2-7b-32k](https://huggingface.co/mesolitica/llama-7b-hf-32768-fpf)',
'BM-PT3 0-shot': 20.37037037037037,
'BM-PT3 1-shot': 20.37037037037037,
'BM-PT3 3-shots': 29.629629629629626,
'Tatabahasa 0-shot': 17.765042979942695,
'Tatabahasa 1-shot': 24.068767908309454,
'Tatabahasa 3-shots': 27.507163323782237,
},
{
'model': '[malaysian-llama2-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-7b-32k-instructions)',
'BM-PT3 0-shot': 35.294117647058826,
'BM-PT3 1-shot': 21.153846153846153,
'BM-PT3 3-shots': 28.30188679245283,
'Tatabahasa 0-shot': 26.07449856733524,
'Tatabahasa 1-shot': 24.068767908309454,
'Tatabahasa 3-shots': 27.507163323782237,
},
{
'model': '[malaysian-llama2-13b-32k](https://huggingface.co/mesolitica/llama-13b-hf-32768-fpf)',
'BM-PT3 0-shot': 33.33333333333333,
'BM-PT3 1-shot': 20.37037037037037,
'BM-PT3 3-shots': 31.48148148148148,
'Tatabahasa 0-shot': 26.07449856733524,
'Tatabahasa 1-shot': 25.214899713467048,
'Tatabahasa 3-shots': 24.355300859598856,
},
{
'model': '[malaysian-llama2-13b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-13b-32k-instructions)',
'BM-PT3 0-shot': 28.57142857142857,
'BM-PT3 1-shot': 12.244897959183673,
'BM-PT3 3-shots': 17.307692307692307,
'Tatabahasa 0-shot': 26.07449856733524,
'Tatabahasa 1-shot': 24.068767908309454,
'Tatabahasa 3-shots': 27.507163323782237,
},
{
'model': '[mistral-7b](https://huggingface.co/mistralai/Mistral-7B-v0.1)',
'Tatabahasa 0-shot': 28.939828080229223,
'Tatabahasa 1-shot': 34.38395415472779,
'Tatabahasa 3-shots': 32.95128939828081,
},
{
'model': '[malaysian-mistral-7b-4k](https://huggingface.co/mesolitica/mistral-7b-4096-fpf)',
'BM-PT3 0-shot': 20.37037037037037,
'BM-PT3 1-shot': 22.22222222222222,
'BM-PT3 3-shots': 33.33333333333333,
'Tatabahasa 0-shot': 21.48997134670487,
'Tatabahasa 1-shot': 28.939828080229223,
'Tatabahasa 3-shots': 24.641833810888254,
},
{
'model': '[malaysian-mistral-7b-32k](https://huggingface.co/mesolitica/mistral-7b-32768-fpf)',
'BM-PT3 0-shot': 16.666666666666664,
'BM-PT3 1-shot': 16.666666666666664,
'BM-PT3 3-shots': 25.925925925925924,
'Tatabahasa 0-shot': 18.624641833810887,
'Tatabahasa 1-shot': 24.355300859598856,
'Tatabahasa 3-shots': 28.653295128939828,
},
{
'model': '[malaysian-mistral-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-mistral-7b-32k-instructions)',
'BM-PT3 0-shot': 21.568627450980394,
'BM-PT3 1-shot': 31.25,
'BM-PT3 3-shots': 28.000000000000004,
}
]
data = pd.DataFrame(data)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
gr.DataFrame(data, datatype = 'markdown')
demo.launch()