Spaces:
Runtime error
Runtime error
LanHarmony
commited on
Commit
•
d911096
1
Parent(s):
569cb36
introduce control net from diffusers
Browse files- app.py +18 -18
- requirements.txt +1 -0
- visual_foundation_models.py +193 -44
app.py
CHANGED
@@ -118,24 +118,24 @@ class ConversationBot:
|
|
118 |
self.edit = ImageEditing(device="cuda:0")
|
119 |
self.i2t = ImageCaptioning(device="cuda:0")
|
120 |
self.t2i = T2I(device="cuda:0")
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
|
140 |
self.tools = [
|
141 |
Tool(name="Get Photo Description", func=self.i2t.inference,
|
|
|
118 |
self.edit = ImageEditing(device="cuda:0")
|
119 |
self.i2t = ImageCaptioning(device="cuda:0")
|
120 |
self.t2i = T2I(device="cuda:0")
|
121 |
+
self.image2canny = image2canny()
|
122 |
+
self.canny2image = canny2image(device="cuda:1")
|
123 |
+
self.image2line = image2line()
|
124 |
+
self.line2image = line2image(device="cuda:1")
|
125 |
+
self.image2hed = image2hed()
|
126 |
+
self.hed2image = hed2image(device="cuda:2")
|
127 |
+
self.image2scribble = image2scribble()
|
128 |
+
self.scribble2image = scribble2image(device="cuda:3")
|
129 |
+
self.image2pose = image2pose()
|
130 |
+
self.pose2image = pose2image(device="cuda:3")
|
131 |
+
self.BLIPVQA = BLIPVQA(device="cuda:4")
|
132 |
+
self.image2seg = image2seg()
|
133 |
+
self.seg2image = seg2image(device="cuda:7")
|
134 |
+
self.image2depth = image2depth()
|
135 |
+
self.depth2image = depth2image(device="cuda:7")
|
136 |
+
self.image2normal = image2normal()
|
137 |
+
self.normal2image = normal2image(device="cuda:5")
|
138 |
+
self.pix2pix = Pix2Pix(device="cuda:0")
|
139 |
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
|
140 |
self.tools = [
|
141 |
Tool(name="Get Photo Description", func=self.i2t.inference,
|
requirements.txt
CHANGED
@@ -28,3 +28,4 @@ diffusers==0.14.0
|
|
28 |
gradio
|
29 |
openai
|
30 |
accelerate
|
|
|
|
28 |
gradio
|
29 |
openai
|
30 |
accelerate
|
31 |
+
controlnet-aux==0.0.1
|
visual_foundation_models.py
CHANGED
@@ -1,19 +1,22 @@
|
|
1 |
import os
|
|
|
|
|
2 |
from diffusers import StableDiffusionPipeline
|
3 |
from diffusers import StableDiffusionInpaintPipeline
|
4 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
6 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
7 |
from ldm.util import instantiate_from_config
|
8 |
from ControlNet.cldm.model import create_model, load_state_dict
|
9 |
from ControlNet.cldm.ddim_hacked import DDIMSampler
|
10 |
-
from ControlNet.annotator.canny import CannyDetector
|
11 |
-
from ControlNet.annotator.mlsd import MLSDdetector
|
12 |
-
from ControlNet.annotator.
|
13 |
-
from ControlNet.annotator.
|
14 |
-
from ControlNet.annotator.
|
15 |
-
from ControlNet.annotator.
|
16 |
-
from ControlNet.annotator.midas import MidasDetector
|
17 |
from PIL import Image
|
18 |
import torch
|
19 |
import numpy as np
|
@@ -23,6 +26,36 @@ from pytorch_lightning import seed_everything
|
|
23 |
import cv2
|
24 |
import random
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def get_new_image_name(org_img_name, func_name="update"):
|
27 |
head_tail = os.path.split(org_img_name)
|
28 |
head = head_tail[0]
|
@@ -139,40 +172,41 @@ class ImageCaptioning:
|
|
139 |
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
140 |
return captions
|
141 |
|
142 |
-
class
|
143 |
def __init__(self):
|
144 |
print("Direct detect canny.")
|
145 |
-
self.
|
146 |
-
self.
|
147 |
-
self.high_thresh = 200
|
148 |
|
149 |
def inference(self, inputs):
|
150 |
print("===>Starting image2canny Inference")
|
151 |
image = Image.open(inputs)
|
152 |
image = np.array(image)
|
153 |
-
canny =
|
|
|
|
|
154 |
canny = 255 - canny
|
155 |
-
|
156 |
updated_image_path = get_new_image_name(inputs, func_name="edge")
|
157 |
-
|
158 |
return updated_image_path
|
159 |
|
160 |
-
class
|
161 |
def __init__(self, device):
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
self.
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
169 |
self.image_resolution = 512
|
170 |
-
self.
|
171 |
-
self.save_memory = False
|
172 |
-
self.strength = 1.0
|
173 |
-
self.guess_mode = False
|
174 |
-
self.scale = 9.0
|
175 |
self.seed = -1
|
|
|
176 |
self.a_prompt = 'best quality, extremely detailed'
|
177 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
178 |
|
@@ -184,28 +218,143 @@ class canny2image:
|
|
184 |
image = 255 - image
|
185 |
prompt = instruct_text
|
186 |
img = resize_image(HWC3(image), self.image_resolution)
|
187 |
-
|
188 |
-
|
189 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
190 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
191 |
self.seed = random.randint(0, 65535)
|
192 |
seed_everything(self.seed)
|
193 |
-
|
194 |
-
|
195 |
-
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
196 |
-
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
197 |
-
shape = (4, H // 8, W // 8)
|
198 |
-
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
199 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
200 |
-
if self.save_memory:
|
201 |
-
self.model.low_vram_shift(is_diffusing=False)
|
202 |
-
x_samples = self.model.decode_first_stage(samples)
|
203 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
204 |
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
return updated_image_path
|
208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
class image2line:
|
210 |
def __init__(self):
|
211 |
print("Direct detect straight line...")
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
import diffusers.utils
|
4 |
from diffusers import StableDiffusionPipeline
|
5 |
from diffusers import StableDiffusionInpaintPipeline
|
6 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
7 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
8 |
+
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
10 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
11 |
from ldm.util import instantiate_from_config
|
12 |
from ControlNet.cldm.model import create_model, load_state_dict
|
13 |
from ControlNet.cldm.ddim_hacked import DDIMSampler
|
14 |
+
# from ControlNet.annotator.canny import CannyDetector
|
15 |
+
# from ControlNet.annotator.mlsd import MLSDdetector
|
16 |
+
# from ControlNet.annotator.hed import HEDdetector, nms
|
17 |
+
# from ControlNet.annotator.openpose import OpenposeDetector
|
18 |
+
# from ControlNet.annotator.uniformer import UniformerDetector
|
19 |
+
# from ControlNet.annotator.midas import MidasDetector
|
|
|
20 |
from PIL import Image
|
21 |
import torch
|
22 |
import numpy as np
|
|
|
26 |
import cv2
|
27 |
import random
|
28 |
|
29 |
+
def HWC3(x):
|
30 |
+
assert x.dtype == np.uint8
|
31 |
+
if x.ndim == 2:
|
32 |
+
x = x[:, :, None]
|
33 |
+
assert x.ndim == 3
|
34 |
+
H, W, C = x.shape
|
35 |
+
assert C == 1 or C == 3 or C == 4
|
36 |
+
if C == 3:
|
37 |
+
return x
|
38 |
+
if C == 1:
|
39 |
+
return np.concatenate([x, x, x], axis=2)
|
40 |
+
if C == 4:
|
41 |
+
color = x[:, :, 0:3].astype(np.float32)
|
42 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
43 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
44 |
+
y = y.clip(0, 255).astype(np.uint8)
|
45 |
+
return y
|
46 |
+
|
47 |
+
def resize_image(input_image, resolution):
|
48 |
+
H, W, C = input_image.shape
|
49 |
+
H = float(H)
|
50 |
+
W = float(W)
|
51 |
+
k = float(resolution) / min(H, W)
|
52 |
+
H *= k
|
53 |
+
W *= k
|
54 |
+
H = int(np.round(H / 64.0)) * 64
|
55 |
+
W = int(np.round(W / 64.0)) * 64
|
56 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
57 |
+
return img
|
58 |
+
|
59 |
def get_new_image_name(org_img_name, func_name="update"):
|
60 |
head_tail = os.path.split(org_img_name)
|
61 |
head = head_tail[0]
|
|
|
172 |
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
173 |
return captions
|
174 |
|
175 |
+
class image2canny_new:
|
176 |
def __init__(self):
|
177 |
print("Direct detect canny.")
|
178 |
+
self.low_threshold = 100
|
179 |
+
self.high_threshold = 200
|
|
|
180 |
|
181 |
def inference(self, inputs):
|
182 |
print("===>Starting image2canny Inference")
|
183 |
image = Image.open(inputs)
|
184 |
image = np.array(image)
|
185 |
+
canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
|
186 |
+
canny = canny[:, :, None]
|
187 |
+
canny = np.concatenate([canny, canny, canny], axis=2)
|
188 |
canny = 255 - canny
|
189 |
+
canny = Image.fromarray(canny)
|
190 |
updated_image_path = get_new_image_name(inputs, func_name="edge")
|
191 |
+
canny.save(updated_image_path)
|
192 |
return updated_image_path
|
193 |
|
194 |
+
class canny2image_new:
|
195 |
def __init__(self, device):
|
196 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
197 |
+
"fusing/stable-diffusion-v1-5-controlnet-canny"
|
198 |
+
)
|
199 |
+
|
200 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
201 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
202 |
+
)
|
203 |
+
|
204 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
205 |
+
self.pipe.to(device)
|
206 |
self.image_resolution = 512
|
207 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
208 |
self.seed = -1
|
209 |
+
self.unconditional_guidance_scale = 9.0
|
210 |
self.a_prompt = 'best quality, extremely detailed'
|
211 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
212 |
|
|
|
218 |
image = 255 - image
|
219 |
prompt = instruct_text
|
220 |
img = resize_image(HWC3(image), self.image_resolution)
|
221 |
+
img = Image.fromarray(img)
|
222 |
+
|
|
|
|
|
223 |
self.seed = random.randint(0, 65535)
|
224 |
seed_everything(self.seed)
|
225 |
+
prompt = prompt + ', ' + self.a_prompt
|
226 |
+
image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
|
228 |
+
image.save(updated_image_path)
|
229 |
+
return updated_image_path
|
230 |
+
|
231 |
+
|
232 |
+
# class image2canny:
|
233 |
+
# def __init__(self):
|
234 |
+
# print("Direct detect canny.")
|
235 |
+
# self.detector = CannyDetector()
|
236 |
+
# self.low_thresh = 100
|
237 |
+
# self.high_thresh = 200
|
238 |
+
#
|
239 |
+
# def inference(self, inputs):
|
240 |
+
# print("===>Starting image2canny Inference")
|
241 |
+
# image = Image.open(inputs)
|
242 |
+
# image = np.array(image)
|
243 |
+
# canny = self.detector(image, self.low_thresh, self.high_thresh)
|
244 |
+
# canny = 255 - canny
|
245 |
+
# image = Image.fromarray(canny)
|
246 |
+
# updated_image_path = get_new_image_name(inputs, func_name="edge")
|
247 |
+
# image.save(updated_image_path)
|
248 |
+
# return updated_image_path
|
249 |
+
#
|
250 |
+
# class canny2image:
|
251 |
+
# def __init__(self, device):
|
252 |
+
# print("Initialize the canny2image model.")
|
253 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
254 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu'))
|
255 |
+
# self.model = model.to(device)
|
256 |
+
# self.device = device
|
257 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
258 |
+
# self.ddim_steps = 20
|
259 |
+
# self.image_resolution = 512
|
260 |
+
# self.num_samples = 1
|
261 |
+
# self.save_memory = False
|
262 |
+
# self.strength = 1.0
|
263 |
+
# self.guess_mode = False
|
264 |
+
# self.scale = 9.0
|
265 |
+
# self.seed = -1
|
266 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
267 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
268 |
+
#
|
269 |
+
# def inference(self, inputs):
|
270 |
+
# print("===>Starting canny2image Inference")
|
271 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
272 |
+
# image = Image.open(image_path)
|
273 |
+
# image = np.array(image)
|
274 |
+
# image = 255 - image
|
275 |
+
# prompt = instruct_text
|
276 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
277 |
+
# H, W, C = img.shape
|
278 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
279 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
280 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
281 |
+
# self.seed = random.randint(0, 65535)
|
282 |
+
# seed_everything(self.seed)
|
283 |
+
# if self.save_memory:
|
284 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
285 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
286 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
287 |
+
# shape = (4, H // 8, W // 8)
|
288 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
289 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
290 |
+
# if self.save_memory:
|
291 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
292 |
+
# x_samples = self.model.decode_first_stage(samples)
|
293 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
294 |
+
# updated_image_path = get_new_image_name(image_path, func_name="canny2image")
|
295 |
+
# real_image = Image.fromarray(x_samples[0]) # get default the index0 image
|
296 |
+
# real_image.save(updated_image_path)
|
297 |
+
# return updated_image_path
|
298 |
+
class image2line_new:
|
299 |
+
def __init__(self):
|
300 |
+
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
|
301 |
+
self.value_thresh = 0.1
|
302 |
+
self.dis_thresh = 0.1
|
303 |
+
self.resolution = 512
|
304 |
+
|
305 |
+
def inference(self, inputs):
|
306 |
+
print("===>Starting image2line Inference")
|
307 |
+
image = Image.open(inputs)
|
308 |
+
image = np.array(image)
|
309 |
+
image = HWC3(image)
|
310 |
+
mlsd = self.detector(resize_image(image, self.resolution), thr_v=self.value_thresh, thr_d=self.dis_thresh)
|
311 |
+
mlsd = np.array(mlsd)
|
312 |
+
mlsd = 255 - mlsd
|
313 |
+
mlsd = Image.fromarray(mlsd)
|
314 |
+
updated_image_path = get_new_image_name(inputs, func_name="line-of")
|
315 |
+
mlsd.save(updated_image_path)
|
316 |
return updated_image_path
|
317 |
|
318 |
+
class line2image_new:
|
319 |
+
def __init__(self, device):
|
320 |
+
print("Initialize the line2image model...")
|
321 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
322 |
+
"fusing/stable-diffusion-v1-5-controlnet-mlsd"
|
323 |
+
)
|
324 |
+
|
325 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
326 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
327 |
+
)
|
328 |
+
|
329 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
330 |
+
self.pipe.to(device)
|
331 |
+
self.image_resolution = 512
|
332 |
+
self.num_inference_steps = 20
|
333 |
+
self.seed = -1
|
334 |
+
self.unconditional_guidance_scale = 9.0
|
335 |
+
self.a_prompt = 'best quality, extremely detailed'
|
336 |
+
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
337 |
+
|
338 |
+
def inference(self, inputs):
|
339 |
+
print("===>Starting line2image Inference")
|
340 |
+
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
341 |
+
image = Image.open(image_path)
|
342 |
+
image = np.array(image)
|
343 |
+
image = 255 - image
|
344 |
+
prompt = instruct_text
|
345 |
+
img = resize_image(HWC3(image), self.image_resolution)
|
346 |
+
img = Image.fromarray(img)
|
347 |
+
|
348 |
+
self.seed = random.randint(0, 65535)
|
349 |
+
seed_everything(self.seed)
|
350 |
+
|
351 |
+
prompt = prompt + ', ' + self.a_prompt
|
352 |
+
image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0]
|
353 |
+
updated_image_path = get_new_image_name(image_path, func_name="line2image")
|
354 |
+
image.save(updated_image_path)
|
355 |
+
return updated_image_path
|
356 |
+
|
357 |
+
|
358 |
class image2line:
|
359 |
def __init__(self):
|
360 |
print("Direct detect straight line...")
|