import os from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionInpaintPipeline from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering from ControlNet.ldm.util import instantiate_from_config from ControlNet.cldm.model import create_model, load_state_dict from ControlNet.cldm.ddim_hacked import DDIMSampler from ControlNet.annotator.canny import CannyDetector from ControlNet.annotator.mlsd import MLSDdetector from ControlNet.annotator.util import HWC3, resize_image from ControlNet.annotator.hed import HEDdetector, nms from ControlNet.annotator.openpose import OpenposeDetector from ControlNet.annotator.uniformer import UniformerDetector from ControlNet.annotator.midas import MidasDetector from PIL import Image import torch import numpy as np import uuid import einops from pytorch_lightning import seed_everything import cv2 import random def get_new_image_name(org_img_name, func_name="update"): head_tail = os.path.split(org_img_name) head = head_tail[0] tail = head_tail[1] name_split = tail.split('.')[0].split('_') this_new_uuid = str(uuid.uuid4())[0:4] if len(name_split) == 1: most_org_file_name = name_split[0] recent_prev_file_name = name_split[0] new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) else: assert len(name_split) == 4 most_org_file_name = name_split[3] recent_prev_file_name = name_split[0] new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) return os.path.join(head, new_file_name) class MaskFormer: def __init__(self, device): self.device = device self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) def inference(self, image_path, text): threshold = 0.5 min_area = 0.02 padding = 20 original_image = Image.open(image_path) image = original_image.resize((512, 512)) inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device) with torch.no_grad(): outputs = self.model(**inputs) mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1]) if area_ratio < min_area: return None true_indices = np.argwhere(mask) mask_array = np.zeros_like(mask, dtype=bool) for idx in true_indices: padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) mask_array[padded_slice] = True visual_mask = (mask_array * 255).astype(np.uint8) image_mask = Image.fromarray(visual_mask) return image_mask.resize(image.size) class ImageEditing: def __init__(self, device): print("Initializing StableDiffusionInpaint to %s" % device) self.device = device self.mask_former = MaskFormer(device=self.device) self.inpainting = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting",).to(device) def remove_part_of_image(self, input): image_path, to_be_removed_txt = input.split(",") print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}') return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background") def replace_part_of_image(self, input): image_path, to_be_replaced_txt, replace_with_txt = input.split(",") print(f'replace_part_of_image: replace_with_txt {replace_with_txt}') original_image = Image.open(image_path) mask_image = self.mask_former.inference(image_path, to_be_replaced_txt) updated_image = self.inpainting(prompt=replace_with_txt, image=original_image, mask_image=mask_image).images[0] updated_image_path = get_new_image_name(image_path, func_name="replace-something") updated_image.save(updated_image_path) return updated_image_path class Pix2Pix: def __init__(self, device): print("Initializing Pix2Pix to %s" % device) self.device = device self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device) self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) def inference(self, inputs): """Change style of image.""" print("===>Starting Pix2Pix Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) original_image = Image.open(image_path) image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0] updated_image_path = get_new_image_name(image_path, func_name="pix2pix") image.save(updated_image_path) return updated_image_path class T2I: def __init__(self, device): print("Initializing T2I to %s" % device) self.device = device self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device) self.pipe.to(device) def inference(self, text): image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"] print(f'{text} refined to {refined_text}') image = self.pipe(refined_text).images[0] image.save(image_filename) print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}") return image_filename class ImageCaptioning: def __init__(self, device): print("Initializing ImageCaptioning to %s" % device) self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device) def inference(self, image_path): inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device) out = self.model.generate(**inputs) captions = self.processor.decode(out[0], skip_special_tokens=True) return captions class image2canny: def __init__(self): print("Direct detect canny.") self.detector = CannyDetector() self.low_thresh = 100 self.high_thresh = 200 def inference(self, inputs): print("===>Starting image2canny Inference") image = Image.open(inputs) image = np.array(image) canny = self.detector(image, self.low_thresh, self.high_thresh) canny = 255 - canny image = Image.fromarray(canny) updated_image_path = get_new_image_name(inputs, func_name="edge") image.save(updated_image_path) return updated_image_path class canny2image: def __init__(self, device): print("Initialize the canny2image model.") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting canny2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) image = 255 - image prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="canny2image") real_image = Image.fromarray(x_samples[0]) # get default the index0 image real_image.save(updated_image_path) return updated_image_path class image2line: def __init__(self): print("Direct detect straight line...") self.detector = MLSDdetector() self.value_thresh = 0.1 self.dis_thresh = 0.1 self.resolution = 512 def inference(self, inputs): print("===>Starting image2hough Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh) updated_image_path = get_new_image_name(inputs, func_name="line-of") hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1) image = Image.fromarray(hough) image.save(updated_image_path) return updated_image_path class line2image: def __init__(self, device): print("Initialize the line2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting line2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) image = 255 - image prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\ cpu().numpy().clip(0,255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="line2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2hed: def __init__(self): print("Direct detect soft HED boundary...") self.detector = HEDdetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2hed Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) hed = self.detector(resize_image(image, self.resolution)) updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") image = Image.fromarray(hed) image.save(updated_image_path) return updated_image_path class hed2image: def __init__(self, device): print("Initialize the hed2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting hed2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="hed2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2scribble: def __init__(self): print("Direct detect scribble.") self.detector = HEDdetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2scribble Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) detected_map = nms(detected_map, 127, 3.0) detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) detected_map[detected_map > 4] = 255 detected_map[detected_map < 255] = 0 detected_map = 255 - detected_map updated_image_path = get_new_image_name(inputs, func_name="scribble") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class scribble2image: def __init__(self, device): print("Initialize the scribble2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting scribble2image Inference") print(f'sketch device {self.device}') image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text image = 255 - image img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="scribble2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2pose: def __init__(self): print("Direct human pose.") self.detector = OpenposeDetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2pose Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map, _ = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="human-pose") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class pose2image: def __init__(self, device): print("Initialize the pose2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting pose2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="pose2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2seg: def __init__(self): print("Direct segmentations.") self.detector = UniformerDetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2seg Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="segmentation") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class seg2image: def __init__(self, device): print("Initialize the seg2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting seg2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="segment2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2depth: def __init__(self): print("Direct depth estimation.") self.detector = MidasDetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2depth Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map, _ = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="depth") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class depth2image: def __init__(self, device): print("Initialize depth2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting depth2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="depth2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2normal: def __init__(self): print("Direct normal estimation.") self.detector = MidasDetector() self.resolution = 512 self.bg_threshold = 0.4 def inference(self, inputs): print("===>Starting image2 normal Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) _, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="normal-map") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class normal2image: def __init__(self, device): print("Initialize normal2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting normal2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = image[:, :, ::-1].copy() img = resize_image(HWC3(img), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="normal2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class BLIPVQA: def __init__(self, device): print("Initializing BLIP VQA to %s" % device) self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(self.device) def get_answer_from_question_and_image(self, inputs): image_path, question = inputs.split(",") raw_image = Image.open(image_path).convert('RGB') print(F'BLIPVQA :question :{question}') inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device) out = self.model.generate(**inputs) answer = self.processor.decode(out[0], skip_special_tokens=True) return answer