Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import json | |
from pheye_builder import create_model_and_transforms | |
from huggingface_hub import hf_hub_download | |
import torch | |
from PIL import Image | |
import os | |
import requests | |
def get_config(hf_model_path): | |
config_path = hf_hub_download(hf_model_path, "config.json") | |
with open(config_path, "r") as f: | |
config = json.load(f) | |
return config | |
def get_model_path(hf_model_path): | |
return hf_hub_download(hf_model_path, "checkpoint.pt") | |
HF_MODEL = "miguelcarv/Pheye-x2-672" | |
config = get_config(HF_MODEL) | |
print("Got config") | |
model, tokenizer = create_model_and_transforms( | |
clip_vision_encoder_path=config["encoder"], | |
lang_decoder_path=config["decoder"], | |
tokenizer_path=config["tokenizer"], | |
cross_attn_every_n_layers=config["cross_interval"], | |
level=config["level"], | |
reduce_factor=config["reduce"], | |
from_layer=config["from_layer"], | |
encoder_dtype=eval(config["encoder_dtype"]), | |
decoder_dtype=eval(config["decoder_dtype"]), | |
dtype=eval(config["other_params_dtype"]) | |
) | |
if config["first_level"]: | |
model.vision_encoder.add_first_level_adapter() | |
print("Created model") | |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model_path = get_model_path(HF_MODEL) | |
model.load_state_dict(torch.load(model_path, map_location="cpu")) | |
model = model.to(DEVICE) | |
print("Loaded model") | |
SYSTEM_PROMPT = "You are an AI visual assistant and you are seeing a single image. You will receive an instruction regarding that image. Your goal is to follow the instruction as faithfully as you can." | |
whiteboard = Image.open(requests.get("https://c1.staticflickr.com/7/6168/6207108414_a8833f410e_o.jpg", stream=True).raw).convert('RGB') | |
taxi_image = Image.open(requests.get("https://llava.hliu.cc/file=/nobackup/haotian/tmp/gradio/ca10383cc943e99941ecffdc4d34c51afb2da472/extreme_ironing.jpg", stream=True).raw).convert('RGB') | |
def generate_answer(img, question, max_new_tokens, num_beams): | |
image = [img] | |
prompt = [f"{SYSTEM_PROMPT}\n\nInstruction: {question}\nOutput:"] | |
inputs = tokenizer(prompt, padding='longest', return_tensors='pt') | |
print("Generating a response with the following parameters:") | |
print(f"""Question: {question}\nMax New Tokens: {max_new_tokens}\nNum Beams: {num_beams}""") | |
model.eval() | |
with torch.no_grad(): | |
outputs = model.generate(vision_x=image, | |
lang_x=inputs.input_ids.to(DEVICE), | |
device=DEVICE, | |
max_new_tokens=max_new_tokens, | |
num_beams = num_beams, | |
eos_token_id = tokenizer.eos_token_id, | |
pad_token_id = tokenizer.pad_token_id, | |
attention_mask=inputs.attention_mask.to(DEVICE)) | |
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].split("Output:")[-1].lstrip() | |
return answer | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_answer, | |
inputs=[ | |
gr.Image(type="pil", label="Image"), | |
gr.Textbox(label="Question"), | |
gr.Slider(minimum=5, maximum=500, step=1, value=50, label="Max New Tokens"), | |
gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Num Beams") | |
], | |
outputs=gr.Textbox(label="Answer"), | |
title="<h1 style='text-align: center; display: block;'>Pheye-x2 672x672 pixels</h1>", | |
examples=[[taxi_image, "What is unusual about this image?", 500, 1], [whiteboard, "What is the main topic of the whiteboard?", 500 ,1]] | |
) | |
if __name__ == "__main__": | |
# Launch the Gradio app | |
iface.launch() |