rewrite app as blocks and use image generation
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
|
4 |
import torch
|
@@ -7,60 +6,73 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
7 |
from transformers import pipeline
|
8 |
from diffusers import StableDiffusionPipeline
|
9 |
|
10 |
-
summarizer = pipeline("summarization")
|
11 |
-
model_id = "runwayml/stable-diffusion-v1-5"
|
12 |
-
|
13 |
-
SAVED_CHECKPOINT = 'mikegarts/distilgpt2-lotr'
|
14 |
-
MIN_WORDS = 120
|
15 |
-
|
16 |
READ_TOKEN = os.environ.get('HF_ACCESS_TOKEN', None)
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=READ_TOKEN)
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
return model, tokenizer
|
27 |
|
|
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
|
|
|
32 |
input_context = prompt
|
33 |
input_ids = tokenizer.encode(input_context, return_tensors="pt").to(model.device)
|
34 |
|
35 |
outputs = model.generate(
|
36 |
input_ids=input_ids,
|
37 |
-
max_length=
|
38 |
temperature=0.7,
|
39 |
num_return_sequences=3,
|
40 |
do_sample=True
|
41 |
)
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
image = pipe(prompt)["sample"][0]
|
48 |
|
49 |
-
def
|
50 |
story = generate(prompt=prompt)
|
51 |
-
summary = summarizer(story, min_length=5, max_length=
|
52 |
-
|
53 |
-
return story,
|
54 |
-
|
55 |
-
|
56 |
-
title =
|
57 |
-
description =
|
58 |
-
|
59 |
-
gr.
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
import torch
|
|
|
6 |
from transformers import pipeline
|
7 |
from diffusers import StableDiffusionPipeline
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
READ_TOKEN = os.environ.get('HF_ACCESS_TOKEN', None)
|
10 |
|
11 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
12 |
+
# model_id = "CompVis/stable-diffusion-v1-4"
|
13 |
+
|
14 |
+
has_cuda = torch.cuda.is_available()
|
15 |
+
device = "cpu"
|
16 |
+
if has_cuda:
|
17 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=READ_TOKEN)
|
18 |
+
device = "cuda"
|
19 |
+
else:
|
20 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", use_auth_token=READ_TOKEN)
|
21 |
+
device = "cpu"
|
22 |
+
|
23 |
+
pipe.to(device)
|
24 |
+
def safety_checker(images, clip_input):
|
25 |
+
return images, False
|
26 |
+
pipe.safety_checker = safety_checker
|
27 |
|
28 |
+
SAVED_CHECKPOINT = 'mikegarts/distilgpt2-lotr'
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(SAVED_CHECKPOINT)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(SAVED_CHECKPOINT)
|
|
|
31 |
|
32 |
+
summarizer = pipeline("summarization")
|
33 |
|
34 |
+
def break_until_dot(txt):
|
35 |
+
return txt.rsplit('.', 1)[0] + '.'
|
36 |
|
37 |
+
def generate(prompt):
|
38 |
input_context = prompt
|
39 |
input_ids = tokenizer.encode(input_context, return_tensors="pt").to(model.device)
|
40 |
|
41 |
outputs = model.generate(
|
42 |
input_ids=input_ids,
|
43 |
+
max_length=180,
|
44 |
temperature=0.7,
|
45 |
num_return_sequences=3,
|
46 |
do_sample=True
|
47 |
)
|
48 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
+
return break_until_dot(decoded)
|
50 |
|
51 |
+
def generate_image(prompt, inference_steps):
|
52 |
+
prompt = prompt + ', masterpiece charcoal pencil art lord of the rings illustration'
|
53 |
+
img = pipe(prompt, height=512, width=512, num_inference_steps=inference_steps)
|
54 |
+
return img.images[0]
|
|
|
55 |
|
56 |
+
def generate_story(prompt):
|
57 |
story = generate(prompt=prompt)
|
58 |
+
summary = summarizer(story, min_length=5, max_length=15)[0]['summary_text']
|
59 |
+
summary = break_until_dot(summary)
|
60 |
+
return story, summary, gr.update(visible=True)
|
61 |
+
|
62 |
+
with gr.Blocks() as demo:
|
63 |
+
title = gr.Markdown('## Lord of the rings app')
|
64 |
+
description = gr.Markdown('### A Lord of the rings insired app that combines text and image generation')
|
65 |
+
prompt = gr.Textbox(label="Your prompt", value="And then the hobbit said")
|
66 |
+
story = gr.Textbox(label="Your story")
|
67 |
+
summary = gr.Textbox(label="Summary")
|
68 |
+
|
69 |
+
bt_make_text = gr.Button("Generate text")
|
70 |
+
bt_make_image = gr.Button("Generate and image (takes about 10-15 minutes on CPU)", visible=False)
|
71 |
+
|
72 |
+
image = gr.Image(label='Illustration for your story')
|
73 |
+
inference_steps = gr.Slider(5, 35, value=15, step=1, label="Num inference steps (more steps makes a better image but takes more time)")
|
74 |
+
|
75 |
+
bt_make_text.click(fn=generate_story, inputs=prompt, outputs=[story, summary, bt_make_image])
|
76 |
+
bt_make_image.click(fn=generate_image, inputs=[summary, inference_steps], outputs=image)
|
77 |
+
|
78 |
+
demo.launch(share=True)
|