import gradio as gr import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import pipeline from diffusers import StableDiffusionPipeline summarizer = pipeline("summarization") model_id = "runwayml/stable-diffusion-v1-5" SAVED_CHECKPOINT = 'mikegarts/distilgpt2-lotr' MIN_WORDS = 120 def get_image_pipe(): pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") pipe.to(pipe.device) return pipe def get_model(): model = AutoModelForCausalLM.from_pretrained(SAVED_CHECKPOINT) tokenizer = AutoTokenizer.from_pretrained(SAVED_CHECKPOINT) return model, tokenizer def generate(prompt): model, tokenizer = get_model() input_context = prompt input_ids = tokenizer.encode(input_context, return_tensors="pt").to(model.device) outputs = model.generate( input_ids=input_ids, max_length=100, temperature=0.7, num_return_sequences=3, do_sample=True ) return tokenizer.decode(outputs[0], skip_special_tokens=True).rsplit('.', 1)[0] + '.' def make_image(prompt): pipe = get_image_pipe() image = pipe(prompt).images[0] def predict(prompt): story = generate(prompt=prompt) summary = summarizer(story, min_length=5, max_length=20)[0]['summary_text'] image = make_image(summary) return story, summarizer(story, min_length=5, max_length=20), image title = "Lord of the rings app" description = """A Lord of the rings insired app that combines text and image generation""" gr.Interface( fn=predict, inputs="textbox", outputs=["text", "text", "image"], title=title, description=description, examples=[["My new adventure would be"], ["Then I a hobbit appeared"], ["Frodo told me"]] ).launch(share=True)