root
commited on
Commit
•
b4942cf
1
Parent(s):
23ce00f
Ajout du module Ovis
Browse files- ovis/__init__.py +3 -0
- ovis/model/__init__.py +2 -0
- ovis/model/configuration_ovis.py +41 -0
- ovis/model/conversation_formatter.py +233 -0
- ovis/model/modeling_ovis.py +414 -0
- ovis/model/visual_tokenizer/base_visual_tokenizer.py +264 -0
- ovis/model/visual_tokenizer/clip_visual_tokenizer.py +41 -0
- ovis/model/visual_tokenizer/siglip_visual_tokenizer.py +43 -0
- ovis/serve/runner.py +105 -0
- ovis/serve/server.py +41 -0
- ovis/train/__init__.py +0 -0
- ovis/train/arguments.py +48 -0
- ovis/train/callback.py +37 -0
- ovis/train/dataset/__init__.py +0 -0
- ovis/train/dataset/caption_dataset.py +67 -0
- ovis/train/dataset/conversation_dataset.py +67 -0
- ovis/train/dataset/multimodal_dataset.py +72 -0
- ovis/train/train.py +206 -0
- ovis/util/__init__.py +0 -0
- ovis/util/constants.py +11 -0
- ovis/util/utils.py +26 -0
ovis/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
ovis/model/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .visual_tokenizer.clip_visual_tokenizer import ClipVisualTokenizerConfig, ClipVisualTokenizer
|
2 |
+
from .visual_tokenizer.siglip_visual_tokenizer import SiglipVisualTokenizerConfig, SiglipVisualTokenizer
|
ovis/model/configuration_ovis.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union, Optional
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig, AutoConfig
|
4 |
+
|
5 |
+
|
6 |
+
class OvisConfig(PretrainedConfig):
|
7 |
+
model_type = "ovis"
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
llm_config: Optional[Union[PretrainedConfig, dict]] = None,
|
12 |
+
visual_tokenizer_config: Optional[Union[PretrainedConfig, dict]] = None,
|
13 |
+
multimodal_max_length=8192,
|
14 |
+
hidden_size=None,
|
15 |
+
conversation_formatter_class=None,
|
16 |
+
llm_attn_implementation=None,
|
17 |
+
disable_tie_weight=False,
|
18 |
+
**kwargs
|
19 |
+
):
|
20 |
+
super().__init__(**kwargs)
|
21 |
+
if llm_config is not None:
|
22 |
+
assert isinstance(llm_config, (PretrainedConfig, dict)), \
|
23 |
+
f"expect `llm_config` to be instance of PretrainedConfig or dict, but got {type(llm_config)} type"
|
24 |
+
if not isinstance(llm_config, PretrainedConfig):
|
25 |
+
model_type = llm_config['model_type']
|
26 |
+
llm_config.pop('model_type')
|
27 |
+
llm_config = AutoConfig.for_model(model_type, **llm_config)
|
28 |
+
self.llm_config = llm_config
|
29 |
+
if visual_tokenizer_config is not None:
|
30 |
+
assert isinstance(visual_tokenizer_config, (PretrainedConfig, dict)), \
|
31 |
+
f"expect `visual_tokenizer_config` to be instance of PretrainedConfig or dict, but got {type(visual_tokenizer_config)} type"
|
32 |
+
if not isinstance(visual_tokenizer_config, PretrainedConfig):
|
33 |
+
model_type = visual_tokenizer_config['model_type']
|
34 |
+
visual_tokenizer_config.pop('model_type')
|
35 |
+
visual_tokenizer_config = AutoConfig.for_model(model_type, **visual_tokenizer_config)
|
36 |
+
self.visual_tokenizer_config = visual_tokenizer_config
|
37 |
+
self.multimodal_max_length = multimodal_max_length
|
38 |
+
self.hidden_size = hidden_size
|
39 |
+
self.conversation_formatter_class = conversation_formatter_class
|
40 |
+
self.llm_attn_implementation = llm_attn_implementation
|
41 |
+
self.disable_tie_weight = disable_tie_weight
|
ovis/model/conversation_formatter.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import List, Dict
|
3 |
+
|
4 |
+
from ovis.util.constants import IMAGE_TOKEN_ID, IGNORE_ID, IMAGE_TOKEN
|
5 |
+
|
6 |
+
|
7 |
+
class ConversationFormatter(ABC):
|
8 |
+
support_tokenizer_types = None
|
9 |
+
|
10 |
+
def __init__(self, tokenizer):
|
11 |
+
tokenizer_type = type(tokenizer).__name__
|
12 |
+
assert tokenizer_type in self.support_tokenizer_types, \
|
13 |
+
f'Invalid tokenizer type, expected one from `{self.support_tokenizer_types}`, but got `{tokenizer_type}`'
|
14 |
+
self.tokenizer = tokenizer
|
15 |
+
self.image_token = IMAGE_TOKEN
|
16 |
+
self.image_token_id = IMAGE_TOKEN_ID
|
17 |
+
self.ignore_id = IGNORE_ID
|
18 |
+
|
19 |
+
def _tokenize_with_image_symbol(self, text):
|
20 |
+
text_chunks = [self.tokenizer(chunk, add_special_tokens=False).input_ids for chunk in
|
21 |
+
text.split(self.image_token)]
|
22 |
+
token_ids = []
|
23 |
+
num_chuck = len(text_chunks)
|
24 |
+
for i, chunk in enumerate(text_chunks):
|
25 |
+
token_ids.extend(chunk)
|
26 |
+
if i < num_chuck - 1:
|
27 |
+
token_ids.append(self.image_token_id)
|
28 |
+
return token_ids
|
29 |
+
|
30 |
+
@abstractmethod
|
31 |
+
def format(self, conversations: List[Dict], generation_preface=None):
|
32 |
+
pass
|
33 |
+
|
34 |
+
@abstractmethod
|
35 |
+
def format_query(self, query, generation_preface=""):
|
36 |
+
pass
|
37 |
+
|
38 |
+
|
39 |
+
class QwenConversationFormatter(ConversationFormatter):
|
40 |
+
support_tokenizer_types = ['QWenTokenizer', 'Qwen2TokenizerFast']
|
41 |
+
|
42 |
+
def __init__(self, tokenizer):
|
43 |
+
super().__init__(tokenizer)
|
44 |
+
self.from2role = {
|
45 |
+
"system": "<|im_start|>system\n",
|
46 |
+
"human": "<|im_start|>user\n",
|
47 |
+
"gpt": "<|im_start|>assistant\n",
|
48 |
+
}
|
49 |
+
self.gpt_token_num = None
|
50 |
+
self.im_end = "<|im_end|>\n"
|
51 |
+
self.default_system_prompt = "You are a helpful assistant."
|
52 |
+
|
53 |
+
def format(self, conversations: List[Dict], generation_preface=None):
|
54 |
+
if self.gpt_token_num is None:
|
55 |
+
self.gpt_token_num = len(self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
|
56 |
+
|
57 |
+
if conversations[0]["from"] != "system":
|
58 |
+
conversations.insert(0, {
|
59 |
+
"from": "system",
|
60 |
+
"value": self.default_system_prompt
|
61 |
+
})
|
62 |
+
|
63 |
+
if generation_preface is not None:
|
64 |
+
conversations.append({
|
65 |
+
"from": "gpt",
|
66 |
+
"value": generation_preface
|
67 |
+
})
|
68 |
+
|
69 |
+
prompt = ""
|
70 |
+
input_ids = []
|
71 |
+
labels = []
|
72 |
+
num_conversation = len(conversations)
|
73 |
+
for i, conversation in enumerate(conversations):
|
74 |
+
frm = conversation["from"]
|
75 |
+
role = self.from2role[frm]
|
76 |
+
message = conversation["value"]
|
77 |
+
text = role + message
|
78 |
+
if i < num_conversation - 1 or generation_preface is None:
|
79 |
+
text += self.im_end
|
80 |
+
prompt += text
|
81 |
+
token_ids = self._tokenize_with_image_symbol(text)
|
82 |
+
input_ids.extend(token_ids)
|
83 |
+
label_ids = [self.ignore_id] * len(token_ids)
|
84 |
+
if frm == "gpt" and generation_preface is None:
|
85 |
+
# learning `\n` following `im_end` is meaningless, so the last `\n` token is ignored in label
|
86 |
+
label_ids[self.gpt_token_num:-1] = token_ids[self.gpt_token_num:-1]
|
87 |
+
labels.extend(label_ids)
|
88 |
+
|
89 |
+
assert self._tokenize_with_image_symbol(prompt) == input_ids
|
90 |
+
assert len(input_ids) == len(labels)
|
91 |
+
|
92 |
+
return prompt, input_ids, labels
|
93 |
+
|
94 |
+
def format_query(self, query, generation_preface=""):
|
95 |
+
prompt, input_ids, _ = self.format([{
|
96 |
+
"from": "human",
|
97 |
+
"value": query
|
98 |
+
}], generation_preface=generation_preface)
|
99 |
+
|
100 |
+
return prompt, input_ids
|
101 |
+
|
102 |
+
|
103 |
+
class Llama3ConversationFormatter(ConversationFormatter):
|
104 |
+
support_tokenizer_types = ['PreTrainedTokenizerFast']
|
105 |
+
|
106 |
+
def __init__(self, tokenizer):
|
107 |
+
super().__init__(tokenizer)
|
108 |
+
self.from2role = {
|
109 |
+
"system": "<|start_header_id|>system<|end_header_id|>\n\n",
|
110 |
+
"human": "<|start_header_id|>user<|end_header_id|>\n\n",
|
111 |
+
"gpt": "<|start_header_id|>assistant<|end_header_id|>\n\n",
|
112 |
+
}
|
113 |
+
self.gpt_token_num = None
|
114 |
+
self.im_end = "<|eot_id|>"
|
115 |
+
self.default_system_prompt = "You are a helpful and honest multimodal assistant."
|
116 |
+
self.bos_token = "<|begin_of_text|>"
|
117 |
+
self.bos_token_ids = None
|
118 |
+
|
119 |
+
def format(self, conversations: List[Dict], generation_preface=None):
|
120 |
+
if self.gpt_token_num is None:
|
121 |
+
self.gpt_token_num = len(self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
|
122 |
+
|
123 |
+
if self.bos_token_ids is None:
|
124 |
+
self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids
|
125 |
+
|
126 |
+
if conversations[0]["from"] != "system":
|
127 |
+
conversations.insert(0, {
|
128 |
+
"from": "system",
|
129 |
+
"value": self.default_system_prompt
|
130 |
+
})
|
131 |
+
|
132 |
+
if generation_preface is not None:
|
133 |
+
conversations.append({
|
134 |
+
"from": "gpt",
|
135 |
+
"value": generation_preface
|
136 |
+
})
|
137 |
+
|
138 |
+
prompt = "" + self.bos_token
|
139 |
+
input_ids = [] + self.bos_token_ids
|
140 |
+
labels = [] + [IGNORE_ID] * len(input_ids)
|
141 |
+
num_conversation = len(conversations)
|
142 |
+
for i, conversation in enumerate(conversations):
|
143 |
+
frm = conversation["from"]
|
144 |
+
role = self.from2role[frm]
|
145 |
+
message = conversation["value"].strip()
|
146 |
+
text = role + message
|
147 |
+
if i < num_conversation - 1 or generation_preface is None:
|
148 |
+
text += self.im_end
|
149 |
+
prompt += text
|
150 |
+
token_ids = self._tokenize_with_image_symbol(text)
|
151 |
+
input_ids.extend(token_ids)
|
152 |
+
label_ids = [self.ignore_id] * len(token_ids)
|
153 |
+
if frm == "gpt":
|
154 |
+
label_ids[self.gpt_token_num:] = token_ids[self.gpt_token_num:]
|
155 |
+
labels.extend(label_ids)
|
156 |
+
|
157 |
+
assert self._tokenize_with_image_symbol(prompt) == input_ids
|
158 |
+
assert len(input_ids) == len(labels)
|
159 |
+
|
160 |
+
return prompt, input_ids, labels
|
161 |
+
|
162 |
+
def format_query(self, query, generation_preface=""):
|
163 |
+
prompt, input_ids, _ = self.format([{
|
164 |
+
"from": "human",
|
165 |
+
"value": query
|
166 |
+
}], generation_preface=generation_preface)
|
167 |
+
|
168 |
+
return prompt, input_ids
|
169 |
+
|
170 |
+
|
171 |
+
class GemmaConversationFormatter(ConversationFormatter):
|
172 |
+
support_tokenizer_types = ['GemmaTokenizer', 'GemmaTokenizerFast']
|
173 |
+
|
174 |
+
def __init__(self, tokenizer):
|
175 |
+
super().__init__(tokenizer)
|
176 |
+
# Gemma does not support system prompt
|
177 |
+
self.from2role = {
|
178 |
+
"human": "<start_of_turn>user\n",
|
179 |
+
"gpt": "<start_of_turn>model\n",
|
180 |
+
}
|
181 |
+
self.gpt_token_num = None
|
182 |
+
self.im_end = "<end_of_turn>\n"
|
183 |
+
self.bos_token = "<bos>"
|
184 |
+
self.bos_token_ids = None
|
185 |
+
|
186 |
+
def format(self, conversations: List[Dict], generation_preface=None):
|
187 |
+
if self.gpt_token_num is None:
|
188 |
+
self.gpt_token_num = len(self.tokenizer(self.from2role["gpt"], add_special_tokens=False).input_ids)
|
189 |
+
|
190 |
+
if self.bos_token_ids is None:
|
191 |
+
self.bos_token_ids = self.tokenizer(self.bos_token, add_special_tokens=False).input_ids
|
192 |
+
|
193 |
+
if conversations[0]["from"] == "system":
|
194 |
+
raise ValueError("Gemma does not support system prompt")
|
195 |
+
|
196 |
+
if generation_preface is not None:
|
197 |
+
conversations.append({
|
198 |
+
"from": "gpt",
|
199 |
+
"value": generation_preface
|
200 |
+
})
|
201 |
+
|
202 |
+
prompt = "" + self.bos_token
|
203 |
+
input_ids = [] + self.bos_token_ids
|
204 |
+
labels = [] + [IGNORE_ID] * len(input_ids)
|
205 |
+
num_conversation = len(conversations)
|
206 |
+
for i, conversation in enumerate(conversations):
|
207 |
+
frm = conversation["from"]
|
208 |
+
role = self.from2role[frm]
|
209 |
+
message = conversation["value"].strip()
|
210 |
+
text = role + message
|
211 |
+
if i < num_conversation - 1 or generation_preface is None:
|
212 |
+
text += self.im_end
|
213 |
+
prompt += text
|
214 |
+
token_ids = self._tokenize_with_image_symbol(text)
|
215 |
+
input_ids.extend(token_ids)
|
216 |
+
label_ids = [self.ignore_id] * len(token_ids)
|
217 |
+
if frm == "gpt":
|
218 |
+
# learning `\n` following `im_end` is meaningless, so the last `\n` token is ignored in label
|
219 |
+
label_ids[self.gpt_token_num:-1] = token_ids[self.gpt_token_num:-1]
|
220 |
+
labels.extend(label_ids)
|
221 |
+
|
222 |
+
assert self._tokenize_with_image_symbol(prompt) == input_ids
|
223 |
+
assert len(input_ids) == len(labels)
|
224 |
+
|
225 |
+
return prompt, input_ids, labels
|
226 |
+
|
227 |
+
def format_query(self, query, generation_preface=""):
|
228 |
+
prompt, input_ids, _ = self.format([{
|
229 |
+
"from": "human",
|
230 |
+
"value": query
|
231 |
+
}], generation_preface=generation_preface)
|
232 |
+
|
233 |
+
return prompt, input_ids
|
ovis/model/modeling_ovis.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from datetime import datetime
|
4 |
+
from importlib import import_module
|
5 |
+
from typing import List, Union, Callable, Optional, Dict
|
6 |
+
|
7 |
+
import PIL.Image
|
8 |
+
import deepspeed
|
9 |
+
import torch
|
10 |
+
from torch import Tensor
|
11 |
+
from torch.nn import init
|
12 |
+
from transformers import PreTrainedModel, AutoConfig, AutoModel, AutoTokenizer, AutoModelForCausalLM
|
13 |
+
from transformers.cache_utils import HybridCache
|
14 |
+
from transformers.generation.utils import GenerateOutput
|
15 |
+
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled, deepspeed_config
|
16 |
+
|
17 |
+
from ovis.model.configuration_ovis import OvisConfig
|
18 |
+
from ovis.model.conversation_formatter import ConversationFormatter
|
19 |
+
from ovis.util.constants import IGNORE_ID, BEGIN_LINE, END_LINE, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, \
|
20 |
+
IMAGE_TOKEN_ID
|
21 |
+
from ovis.util.utils import rank0_print
|
22 |
+
|
23 |
+
|
24 |
+
class VisualEmbedding(torch.nn.Embedding):
|
25 |
+
def forward(self, visual_tokens: Tensor) -> Tensor:
|
26 |
+
if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
|
27 |
+
return super().forward(visual_tokens)
|
28 |
+
return torch.matmul(visual_tokens, self.weight)
|
29 |
+
|
30 |
+
def reset_parameters(self, mean=0., std=1.) -> None:
|
31 |
+
init.normal_(self.weight, mean=mean, std=std)
|
32 |
+
self._fill_padding_idx_with_zero()
|
33 |
+
|
34 |
+
|
35 |
+
class OvisPreTrainedModel(PreTrainedModel):
|
36 |
+
config_class = OvisConfig
|
37 |
+
base_model_prefix = "ovis"
|
38 |
+
|
39 |
+
|
40 |
+
class Ovis(OvisPreTrainedModel):
|
41 |
+
|
42 |
+
def __init__(self, config: OvisConfig, *inputs, **kwargs):
|
43 |
+
super().__init__(config, *inputs, **kwargs)
|
44 |
+
if kwargs.get('train_from_scratch'):
|
45 |
+
self.llm = kwargs['llm']
|
46 |
+
self.generation_config = self.llm.generation_config
|
47 |
+
self.config.llm_config = self.llm.config
|
48 |
+
self.config.hidden_size = self.llm.config.hidden_size # for deepspeed auto configuration
|
49 |
+
self.text_tokenizer = kwargs['text_tokenizer']
|
50 |
+
self.visual_tokenizer = kwargs['visual_tokenizer']
|
51 |
+
self.config.visual_tokenizer_config = self.visual_tokenizer.config
|
52 |
+
else:
|
53 |
+
attn_kwargs = dict()
|
54 |
+
if self.config.llm_attn_implementation:
|
55 |
+
attn_kwargs['attn_implementation'] = self.config.llm_attn_implementation
|
56 |
+
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs)
|
57 |
+
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
|
58 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
|
59 |
+
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
|
60 |
+
image_processor_name_or_path=self.config.name_or_path)
|
61 |
+
|
62 |
+
# initialize vte
|
63 |
+
if is_deepspeed_zero3_enabled():
|
64 |
+
with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
|
65 |
+
self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size)
|
66 |
+
else:
|
67 |
+
self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size,
|
68 |
+
device=self.visual_tokenizer.device, dtype=self.visual_tokenizer.dtype)
|
69 |
+
|
70 |
+
def _merge_modules(modules_list: tuple):
|
71 |
+
merged_modules = []
|
72 |
+
for modules in modules_list:
|
73 |
+
merged_modules.extend(modules if modules else [])
|
74 |
+
return merged_modules
|
75 |
+
|
76 |
+
self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
|
77 |
+
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
|
78 |
+
self._keep_in_fp32_modules = _merge_modules(
|
79 |
+
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
|
80 |
+
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
|
81 |
+
self.supports_gradient_checkpointing = all(
|
82 |
+
(self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
|
83 |
+
self._supports_flash_attn_2 = all(
|
84 |
+
(self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
|
85 |
+
self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
|
86 |
+
|
87 |
+
def get_text_tokenizer(self):
|
88 |
+
return self.text_tokenizer
|
89 |
+
|
90 |
+
def get_visual_tokenizer(self):
|
91 |
+
return self.visual_tokenizer
|
92 |
+
|
93 |
+
def tie_weights(self):
|
94 |
+
if not self.config.disable_tie_weight:
|
95 |
+
self.get_llm().tie_weights()
|
96 |
+
|
97 |
+
def re_init_vte(self, mean, std):
|
98 |
+
vte = self.get_vte()
|
99 |
+
rank0_print(BEGIN_LINE)
|
100 |
+
rank0_print(f'[{datetime.now()}] Before re-initialization of vte: ')
|
101 |
+
with deepspeed.zero.GatheredParameters([vte.weight]):
|
102 |
+
rank0_print(f'vte.weight: {vte.weight}')
|
103 |
+
with deepspeed.zero.GatheredParameters([vte.weight], modifier_rank=0):
|
104 |
+
if not is_deepspeed_zero3_enabled() or deepspeed.comm.get_rank() == 0:
|
105 |
+
vte.reset_parameters(mean, std)
|
106 |
+
rank0_print(f'[{datetime.now()}] After re-initialization of vte:')
|
107 |
+
with deepspeed.zero.GatheredParameters([vte.weight]):
|
108 |
+
rank0_print(f'vte.weight: {vte.weight}')
|
109 |
+
rank0_print(END_LINE)
|
110 |
+
|
111 |
+
def get_monitor_tensors(self):
|
112 |
+
monitor_tensors = dict(
|
113 |
+
wte=self.get_wte().weight,
|
114 |
+
lm_head=self.get_lm_head().weight,
|
115 |
+
vte=self.get_vte().weight
|
116 |
+
)
|
117 |
+
monitor_tensors.update(
|
118 |
+
{f'visual_tokenizer_{k}': v for k, v in self.get_visual_tokenizer().get_monitor_tensors().items()})
|
119 |
+
return monitor_tensors
|
120 |
+
|
121 |
+
def get_lm_head(self):
|
122 |
+
return self.get_llm().get_output_embeddings()
|
123 |
+
|
124 |
+
def get_llm(self):
|
125 |
+
return self.llm
|
126 |
+
|
127 |
+
def get_vte(self):
|
128 |
+
return self.vte
|
129 |
+
|
130 |
+
def get_wte(self):
|
131 |
+
return self.llm.get_input_embeddings()
|
132 |
+
|
133 |
+
def get_conversation_formatter(self) -> ConversationFormatter:
|
134 |
+
if getattr(self, 'conversation_formatter', None) is None:
|
135 |
+
self.conversation_formatter = getattr(import_module(".conversation_formatter", __package__),
|
136 |
+
self.config.conversation_formatter_class)(self.text_tokenizer)
|
137 |
+
return self.conversation_formatter
|
138 |
+
|
139 |
+
def forward(
|
140 |
+
self,
|
141 |
+
input_ids: torch.Tensor,
|
142 |
+
attention_mask: torch.Tensor,
|
143 |
+
labels: Optional[torch.Tensor],
|
144 |
+
pixel_values: List[Optional[torch.Tensor]],
|
145 |
+
**kwargs
|
146 |
+
):
|
147 |
+
assert self.training, "`forward` can only be used in training. For inference, use `generate`."
|
148 |
+
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
149 |
+
text_input_ids=input_ids,
|
150 |
+
text_attention_masks=attention_mask,
|
151 |
+
text_labels=labels,
|
152 |
+
pixel_values=pixel_values
|
153 |
+
)
|
154 |
+
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
|
155 |
+
|
156 |
+
def merge_multimodal(
|
157 |
+
self,
|
158 |
+
text_input_ids: torch.Tensor,
|
159 |
+
text_attention_masks: torch.Tensor,
|
160 |
+
text_labels: Optional[torch.Tensor],
|
161 |
+
pixel_values: List[Optional[torch.Tensor]]
|
162 |
+
):
|
163 |
+
input_device = text_input_ids.device
|
164 |
+
visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size
|
165 |
+
visual_indicator_embeds = self.get_vte()(
|
166 |
+
torch.tensor(
|
167 |
+
list(range(visual_vocab_szie - 5, visual_vocab_szie)),
|
168 |
+
dtype=torch.long,
|
169 |
+
device=self.get_visual_tokenizer().device
|
170 |
+
)
|
171 |
+
).to(device=input_device)
|
172 |
+
|
173 |
+
if self.training:
|
174 |
+
# When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
|
175 |
+
# For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
|
176 |
+
# (see below in this function); so, the gradient will not be affected.
|
177 |
+
num_images = [x.shape[0] for x in pixel_values]
|
178 |
+
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
|
179 |
+
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
180 |
+
split_size_or_sections=num_images, dim=0)
|
181 |
+
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
182 |
+
split_size_or_sections=num_images, dim=0)
|
183 |
+
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
|
184 |
+
visual_input_ids]
|
185 |
+
else:
|
186 |
+
# When inference, sample can include only text with `None` pixel_value
|
187 |
+
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
|
188 |
+
if sum(num_images) > 0:
|
189 |
+
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
|
190 |
+
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
191 |
+
split_size_or_sections=num_images, dim=0)
|
192 |
+
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
193 |
+
split_size_or_sections=num_images, dim=0)
|
194 |
+
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
|
195 |
+
visual_input_ids]
|
196 |
+
else:
|
197 |
+
# just placeholders
|
198 |
+
visual_embeds = [None] * len(num_images)
|
199 |
+
visual_input_ids = [None] * len(num_images)
|
200 |
+
visual_labels = [None] * len(num_images)
|
201 |
+
# just placeholders
|
202 |
+
text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device)
|
203 |
+
|
204 |
+
input_embeds = []
|
205 |
+
attention_masks = []
|
206 |
+
labels = []
|
207 |
+
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
|
208 |
+
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
|
209 |
+
):
|
210 |
+
placeholder_token_mask = torch.lt(text_input_id, 0)
|
211 |
+
text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0))
|
212 |
+
for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS):
|
213 |
+
text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i]
|
214 |
+
image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
|
215 |
+
if len(image_atom_positions) > 0:
|
216 |
+
input_embed_parts = []
|
217 |
+
attention_mask_parts = []
|
218 |
+
label_parts = []
|
219 |
+
prev_image_atom_position = -1
|
220 |
+
for index, image_atom_position in enumerate(image_atom_positions):
|
221 |
+
input_embed_parts.append(
|
222 |
+
text_embed[prev_image_atom_position + 1:image_atom_position, :])
|
223 |
+
label_parts.append(
|
224 |
+
text_label[prev_image_atom_position + 1:image_atom_position])
|
225 |
+
attention_mask_parts.append(
|
226 |
+
text_attention_mask[prev_image_atom_position + 1:image_atom_position])
|
227 |
+
input_embed_parts.append(visual_embed[index])
|
228 |
+
attention_mask_parts.append(
|
229 |
+
torch.ones_like(visual_label[index], dtype=torch.bool))
|
230 |
+
label_parts.append(visual_label[index])
|
231 |
+
prev_image_atom_position = image_atom_position
|
232 |
+
if prev_image_atom_position + 1 < text_input_id.shape[0]:
|
233 |
+
input_embed_parts.append(
|
234 |
+
text_embed[prev_image_atom_position + 1:, :])
|
235 |
+
attention_mask_parts.append(
|
236 |
+
text_attention_mask[prev_image_atom_position + 1:])
|
237 |
+
label_parts.append(
|
238 |
+
text_label[prev_image_atom_position + 1:])
|
239 |
+
input_embed = torch.cat(input_embed_parts, dim=0)
|
240 |
+
attention_mask = torch.cat(attention_mask_parts, dim=0)
|
241 |
+
label = torch.cat(label_parts, dim=0)
|
242 |
+
else:
|
243 |
+
input_embed = text_embed
|
244 |
+
attention_mask = text_attention_mask
|
245 |
+
label = text_label
|
246 |
+
if self.training:
|
247 |
+
# Make visual_embed & visual_indicator_embeds involved in the backward graph,
|
248 |
+
# to be compatible with deepspeed zero and ddp.
|
249 |
+
input_embed += torch.sum(visual_embed * 0.0) + torch.sum(visual_indicator_embeds * 0.0)
|
250 |
+
input_embeds.append(input_embed)
|
251 |
+
attention_masks.append(attention_mask)
|
252 |
+
labels.append(label)
|
253 |
+
|
254 |
+
if self.training: # padding to self.config.multimodal_max_length for increased training speed
|
255 |
+
padding_size = max(0, self.config.multimodal_max_length - len(input_embeds[0]))
|
256 |
+
input_embeds[0] = torch.nn.ConstantPad2d((0, 0, 0, padding_size), 0.0)(input_embeds[0])
|
257 |
+
attention_masks[0] = torch.nn.ConstantPad1d((0, padding_size), False)(attention_masks[0])
|
258 |
+
labels[0] = torch.nn.ConstantPad1d((0, padding_size), IGNORE_ID)(labels[0])
|
259 |
+
batch_input_embeds = torch.nn.utils.rnn.pad_sequence(input_embeds, batch_first=True, padding_value=0.0)[:,
|
260 |
+
:self.config.multimodal_max_length, :]
|
261 |
+
batch_attention_mask = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True, padding_value=False)[
|
262 |
+
:,
|
263 |
+
:self.config.multimodal_max_length]
|
264 |
+
batch_labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_ID)[:,
|
265 |
+
:self.config.multimodal_max_length]
|
266 |
+
|
267 |
+
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
|
268 |
+
|
269 |
+
def preprocess_inputs(
|
270 |
+
self,
|
271 |
+
text_or_conversations: Union[List[Dict], str],
|
272 |
+
images: Optional[List[PIL.Image.Image]],
|
273 |
+
max_partition=9,
|
274 |
+
generation_preface='',
|
275 |
+
return_labels=False,
|
276 |
+
propagate_exception=True
|
277 |
+
):
|
278 |
+
# convert text to conversations
|
279 |
+
if isinstance(text_or_conversations, str):
|
280 |
+
conversations = [{
|
281 |
+
"from": "human",
|
282 |
+
"value": text_or_conversations
|
283 |
+
}]
|
284 |
+
elif isinstance(text_or_conversations, list):
|
285 |
+
conversations = text_or_conversations
|
286 |
+
else:
|
287 |
+
raise ValueError(f'Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,'
|
288 |
+
f' but got {type(text_or_conversations)}')
|
289 |
+
|
290 |
+
# format conversations
|
291 |
+
prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format(
|
292 |
+
conversations, generation_preface=generation_preface)
|
293 |
+
|
294 |
+
# place image placeholders
|
295 |
+
input_ids = []
|
296 |
+
labels = []
|
297 |
+
pixel_values = []
|
298 |
+
invalidate_label = False
|
299 |
+
image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID]
|
300 |
+
last_image_token_index = -1
|
301 |
+
for i in range(len(image_token_indices)):
|
302 |
+
head = 0 if i == 0 else image_token_indices[i - 1] + 1
|
303 |
+
tail = image_token_indices[i]
|
304 |
+
last_image_token_index = tail
|
305 |
+
input_ids.extend(raw_input_ids[head:tail])
|
306 |
+
labels.extend(raw_labels[head:tail])
|
307 |
+
try:
|
308 |
+
image = images[i]
|
309 |
+
raw_pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image(
|
310 |
+
image, max_partition=max_partition)
|
311 |
+
except Exception as e:
|
312 |
+
if propagate_exception:
|
313 |
+
raise e
|
314 |
+
logging.exception(e)
|
315 |
+
invalidate_label = True
|
316 |
+
raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input()
|
317 |
+
input_ids.extend(image_placeholders)
|
318 |
+
labels.extend([IGNORE_ID] * len(image_placeholders))
|
319 |
+
pixel_values.append(raw_pixel_values)
|
320 |
+
input_ids.extend(raw_input_ids[last_image_token_index + 1:])
|
321 |
+
labels.extend(raw_labels[last_image_token_index + 1:])
|
322 |
+
|
323 |
+
# return tensors
|
324 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
325 |
+
labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long)
|
326 |
+
pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None
|
327 |
+
|
328 |
+
if return_labels:
|
329 |
+
return prompt, input_ids, pixel_values, labels
|
330 |
+
else:
|
331 |
+
return prompt, input_ids, pixel_values
|
332 |
+
|
333 |
+
def save_pretrained(
|
334 |
+
self,
|
335 |
+
save_directory: Union[str, os.PathLike],
|
336 |
+
is_main_process: bool = True,
|
337 |
+
state_dict: Optional[dict] = None,
|
338 |
+
save_function: Callable = torch.save,
|
339 |
+
push_to_hub: bool = False,
|
340 |
+
max_shard_size: Union[int, str] = "5GB",
|
341 |
+
safe_serialization: bool = True,
|
342 |
+
variant: Optional[str] = None,
|
343 |
+
token: Optional[Union[str, bool]] = None,
|
344 |
+
save_peft_format: bool = True,
|
345 |
+
**kwargs
|
346 |
+
):
|
347 |
+
super().save_pretrained(save_directory,
|
348 |
+
is_main_process=is_main_process,
|
349 |
+
state_dict=state_dict,
|
350 |
+
save_function=save_function,
|
351 |
+
safe_serialization=safe_serialization)
|
352 |
+
self.get_text_tokenizer().save_pretrained(save_directory)
|
353 |
+
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
|
354 |
+
|
355 |
+
# uncomment the following will additionally save a separate visual tokenizer
|
356 |
+
# visual_tokenizer_directory = os.path.join(save_directory, 'visual_tokenizer')
|
357 |
+
# self.get_visual_tokenizer().save_pretrained(visual_tokenizer_directory,
|
358 |
+
# is_main_process=is_main_process,
|
359 |
+
# state_dict=None,
|
360 |
+
# save_function=save_function,
|
361 |
+
# safe_serialization=safe_serialization)
|
362 |
+
# self.get_visual_tokenizer().get_image_processor().save_pretrained(visual_tokenizer_directory)
|
363 |
+
|
364 |
+
def _get_hybrid_cache_for_llm(self, max_batch_size: int, max_cache_len: int):
|
365 |
+
cache_cls = HybridCache
|
366 |
+
llm = self.get_llm()
|
367 |
+
|
368 |
+
need_new_cache = (
|
369 |
+
not hasattr(llm, "_cache")
|
370 |
+
or (not isinstance(llm._cache, cache_cls))
|
371 |
+
or llm._cache.max_batch_size != max_batch_size
|
372 |
+
or llm._cache.max_cache_len < max_cache_len
|
373 |
+
)
|
374 |
+
|
375 |
+
if need_new_cache:
|
376 |
+
if hasattr(llm.config, "_pre_quantization_dtype"):
|
377 |
+
cache_dtype = llm.config._pre_quantization_dtype
|
378 |
+
else:
|
379 |
+
cache_dtype = llm.dtype
|
380 |
+
llm._cache = cache_cls(
|
381 |
+
config=llm.config,
|
382 |
+
max_batch_size=max_batch_size,
|
383 |
+
max_cache_len=max_cache_len,
|
384 |
+
device=llm.device,
|
385 |
+
dtype=cache_dtype,
|
386 |
+
)
|
387 |
+
else:
|
388 |
+
llm._cache.reset()
|
389 |
+
return llm._cache
|
390 |
+
|
391 |
+
# TODO: support batch generation
|
392 |
+
def generate(
|
393 |
+
self,
|
394 |
+
inputs: Optional[torch.Tensor] = None,
|
395 |
+
**kwargs
|
396 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
397 |
+
assert inputs.shape[0] == 1, 'Currently, only support `batch_size=1`'
|
398 |
+
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
399 |
+
text_input_ids=inputs,
|
400 |
+
text_attention_masks=kwargs.pop('attention_mask'),
|
401 |
+
text_labels=None,
|
402 |
+
pixel_values=kwargs.pop('pixel_values')
|
403 |
+
)
|
404 |
+
if getattr(self.generation_config, 'cache_implementation') == 'hybrid': # mainly for Gemma2
|
405 |
+
kwargs['past_key_values'] = self._get_hybrid_cache_for_llm(
|
406 |
+
getattr(kwargs, "num_beams", 1), kwargs['max_new_tokens'] + inputs_embeds.shape[-2])
|
407 |
+
self.get_llm()._supports_cache_class = True
|
408 |
+
kwargs['cache_implementation'] = None
|
409 |
+
|
410 |
+
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
|
411 |
+
|
412 |
+
|
413 |
+
AutoConfig.register("ovis", OvisConfig)
|
414 |
+
AutoModelForCausalLM.register(OvisConfig, Ovis)
|
ovis/model/visual_tokenizer/base_visual_tokenizer.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union, Optional
|
2 |
+
|
3 |
+
import PIL.Image
|
4 |
+
import torch
|
5 |
+
from torch.nn.functional import softmax, gumbel_softmax, pad
|
6 |
+
from transformers import PretrainedConfig, PreTrainedModel, AutoImageProcessor, AutoModel, AutoConfig
|
7 |
+
from ovis.util.constants import IMAGE_INDICATOR_IDS, IMAGE_ATOM_ID
|
8 |
+
|
9 |
+
|
10 |
+
class BaseVisualTokenizerConfig(PretrainedConfig):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
vocab_size=16384,
|
14 |
+
tokenize_function="softmax",
|
15 |
+
tau=1.0,
|
16 |
+
depths=None,
|
17 |
+
drop_cls_token=False,
|
18 |
+
backbone_config: Optional[Union[PretrainedConfig, dict]] = None,
|
19 |
+
hidden_stride: int = 1,
|
20 |
+
**kwargs
|
21 |
+
):
|
22 |
+
super().__init__(**kwargs)
|
23 |
+
self.vocab_size = vocab_size
|
24 |
+
self.tokenize_function = tokenize_function
|
25 |
+
self.tau = tau
|
26 |
+
if isinstance(depths, str):
|
27 |
+
depths = [int(x) for x in depths.split('|')]
|
28 |
+
self.depths = depths
|
29 |
+
self.backbone_kwargs = {}
|
30 |
+
self.drop_cls_token = drop_cls_token
|
31 |
+
if backbone_config is not None:
|
32 |
+
assert isinstance(backbone_config, (PretrainedConfig, dict)), \
|
33 |
+
f"expect `backbone_config` to be instance of PretrainedConfig or dict, but got {type(backbone_config)} type"
|
34 |
+
if not isinstance(backbone_config, PretrainedConfig):
|
35 |
+
model_type = backbone_config['model_type']
|
36 |
+
backbone_config.pop('model_type')
|
37 |
+
backbone_config = AutoConfig.for_model(model_type, **backbone_config)
|
38 |
+
self.backbone_config = backbone_config
|
39 |
+
self.hidden_stride = hidden_stride
|
40 |
+
|
41 |
+
|
42 |
+
class BaseVisualTokenizer(PreTrainedModel):
|
43 |
+
base_model_prefix = "backbone"
|
44 |
+
main_input_name = None
|
45 |
+
_image_processor_class = None
|
46 |
+
_image_processor_kwargs = {}
|
47 |
+
_backbone_class = None
|
48 |
+
_backbone_name_or_path = None
|
49 |
+
|
50 |
+
def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
|
51 |
+
super().__init__(config, *inputs, **kwargs)
|
52 |
+
if kwargs.get('train_from_scratch'):
|
53 |
+
self.image_processor = self._image_processor_class.from_pretrained(self._backbone_name_or_path,
|
54 |
+
**self._image_processor_kwargs)
|
55 |
+
self.backbone = self._backbone_class.from_pretrained(self._backbone_name_or_path,
|
56 |
+
**self.config.backbone_kwargs)
|
57 |
+
self.config.backbone_config = self.backbone.config
|
58 |
+
else:
|
59 |
+
self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
|
60 |
+
self.backbone = AutoModel.from_config(self.config.backbone_config)
|
61 |
+
head_dim = self.config.vocab_size - len(IMAGE_INDICATOR_IDS) # reserved tokens for IMAGE_INDICATORS
|
62 |
+
self.head = torch.nn.Sequential(
|
63 |
+
torch.nn.Linear(
|
64 |
+
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, head_dim,
|
65 |
+
bias=False
|
66 |
+
),
|
67 |
+
torch.nn.LayerNorm(head_dim)
|
68 |
+
)
|
69 |
+
|
70 |
+
assert all((self.image_processor.do_resize,
|
71 |
+
not getattr(self.image_processor, 'do_center_crop', False),
|
72 |
+
self.image_processor.do_rescale,
|
73 |
+
self.image_processor.do_normalize
|
74 |
+
)), f"image_processor `{self.image_processor}` is not supported currently"
|
75 |
+
|
76 |
+
def get_backbone(self):
|
77 |
+
return self.backbone
|
78 |
+
|
79 |
+
def get_monitor_tensors(self):
|
80 |
+
raise NotImplementedError
|
81 |
+
|
82 |
+
def get_image_processor(self):
|
83 |
+
return self.image_processor
|
84 |
+
|
85 |
+
def mock_input(self):
|
86 |
+
height, width = self.get_image_size()
|
87 |
+
return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1))
|
88 |
+
|
89 |
+
def get_head(self):
|
90 |
+
return self.head
|
91 |
+
|
92 |
+
def get_image_size(self):
|
93 |
+
raise NotImplementedError
|
94 |
+
|
95 |
+
@staticmethod
|
96 |
+
def construct_image_placeholders(grid):
|
97 |
+
image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
|
98 |
+
if grid[0] * grid[1] > 1:
|
99 |
+
for r in range(grid[0]):
|
100 |
+
for c in range(grid[1]):
|
101 |
+
image_placeholders.append(IMAGE_ATOM_ID)
|
102 |
+
if c < grid[1] - 1:
|
103 |
+
image_placeholders.append(IMAGE_INDICATOR_IDS[2])
|
104 |
+
if r < grid[0] - 1:
|
105 |
+
image_placeholders.append(IMAGE_INDICATOR_IDS[3])
|
106 |
+
image_placeholders.append(IMAGE_INDICATOR_IDS[4])
|
107 |
+
return image_placeholders
|
108 |
+
|
109 |
+
def preprocess_image(self, image: PIL.Image.Image, max_partition=9, covering_threshold=0.9, convert_to_rgb=True):
|
110 |
+
def _preprocess(img: PIL.Image.Image, side):
|
111 |
+
# first resize and preprocess
|
112 |
+
w, h = img.size
|
113 |
+
if w == h:
|
114 |
+
new_width = new_height = side
|
115 |
+
elif w > h:
|
116 |
+
new_width = side
|
117 |
+
new_height = int(h / w * new_width)
|
118 |
+
else:
|
119 |
+
new_height = side
|
120 |
+
new_width = int(w / h * new_height)
|
121 |
+
new_size = dict(height=new_height, width=new_width)
|
122 |
+
pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors='pt')['pixel_values']
|
123 |
+
|
124 |
+
# then pad to square
|
125 |
+
square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
|
126 |
+
new_height, new_width = pixel_values.shape[2:]
|
127 |
+
if new_height == new_width:
|
128 |
+
square_values[:, :, :, :] = pixel_values
|
129 |
+
elif new_height > new_width:
|
130 |
+
from_index = (side - new_width) // 2
|
131 |
+
square_values[:, :, :, from_index:from_index + new_width] = pixel_values
|
132 |
+
else:
|
133 |
+
from_index = (side - new_height) // 2
|
134 |
+
square_values[:, :, from_index:from_index + new_height, :] = pixel_values
|
135 |
+
|
136 |
+
return square_values
|
137 |
+
|
138 |
+
def _partition(img, grid):
|
139 |
+
w, h = img.size
|
140 |
+
row_height = h // grid[0]
|
141 |
+
col_width = w // grid[1]
|
142 |
+
|
143 |
+
partition = []
|
144 |
+
for row in range(grid[0]):
|
145 |
+
for col in range(grid[1]):
|
146 |
+
left = col * col_width
|
147 |
+
upper = row * row_height
|
148 |
+
right = w if col == grid[1] - 1 else (col + 1) * col_width
|
149 |
+
lower = h if row == grid[0] - 1 else (row + 1) * row_height
|
150 |
+
partition.append((left, upper, right, lower))
|
151 |
+
|
152 |
+
return partition
|
153 |
+
|
154 |
+
def _covering_area(left, upper, right, lower, side):
|
155 |
+
w = right - left
|
156 |
+
h = lower - upper
|
157 |
+
w, h = max(w, h), min(w, h)
|
158 |
+
if w > side:
|
159 |
+
h = h / w * side
|
160 |
+
w = side
|
161 |
+
return w * h
|
162 |
+
|
163 |
+
def _get_best_grid(img, side):
|
164 |
+
img_area = img.size[0] * img.size[1]
|
165 |
+
|
166 |
+
candidate_grids = []
|
167 |
+
for i in range(1, max_partition + 1):
|
168 |
+
for j in range(1, max_partition + 1):
|
169 |
+
if i * j <= max_partition:
|
170 |
+
candidate_grids.append((i, j))
|
171 |
+
|
172 |
+
all_grids = []
|
173 |
+
good_grids = []
|
174 |
+
for grid in candidate_grids:
|
175 |
+
partition = _partition(img, grid)
|
176 |
+
covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
|
177 |
+
assert covering_ratio <= 1.0
|
178 |
+
all_grids.append((grid, covering_ratio))
|
179 |
+
if covering_ratio > covering_threshold:
|
180 |
+
good_grids.append((grid, covering_ratio))
|
181 |
+
|
182 |
+
if len(good_grids) > 0:
|
183 |
+
# pick the good partition with minimum #sub_images and break the tie using covering_ratio
|
184 |
+
return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
|
185 |
+
else:
|
186 |
+
# pick the partition with maximum covering_ratio and break the tie using #sub_images
|
187 |
+
return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]
|
188 |
+
|
189 |
+
if convert_to_rgb and image.mode != 'RGB':
|
190 |
+
image = image.convert('RGB')
|
191 |
+
|
192 |
+
sides = self.get_image_size()
|
193 |
+
if sides[0] != sides[1]:
|
194 |
+
raise ValueError('get_image_size() returns non-square size')
|
195 |
+
side = sides[0]
|
196 |
+
grid = _get_best_grid(image, side)
|
197 |
+
partition = _partition(image, grid)
|
198 |
+
crops = [image.crop(p) for p in partition]
|
199 |
+
if len(crops) > 1:
|
200 |
+
crops.insert(0, image)
|
201 |
+
pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
|
202 |
+
image_placeholders = self.construct_image_placeholders(grid)
|
203 |
+
return pixel_values, image_placeholders
|
204 |
+
|
205 |
+
def get_backbone_layer(self, index):
|
206 |
+
return self.backbone.vision_model.encoder.layers[index]
|
207 |
+
|
208 |
+
def tokenize(self, logits):
|
209 |
+
def st_argmax(y_soft, dim): # straight-through softmax
|
210 |
+
index = y_soft.max(dim, keepdim=True)[1]
|
211 |
+
y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
|
212 |
+
ret = y_hard - y_soft.detach() + y_soft
|
213 |
+
return ret
|
214 |
+
|
215 |
+
if self.config.tokenize_function == 'softmax':
|
216 |
+
tokens = softmax(logits, dim=-1)
|
217 |
+
elif self.config.tokenize_function == 'gumbel_argmax':
|
218 |
+
tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
|
219 |
+
elif self.config.tokenize_function == 'st_argmax':
|
220 |
+
tokens = st_argmax(logits, dim=-1)
|
221 |
+
else:
|
222 |
+
raise ValueError(
|
223 |
+
f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
|
224 |
+
return tokens
|
225 |
+
|
226 |
+
def encode(self, pixel_values):
|
227 |
+
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
|
228 |
+
features = output.hidden_states[-1]
|
229 |
+
if self.config.drop_cls_token:
|
230 |
+
features = features[:, 1:, :]
|
231 |
+
|
232 |
+
# merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
|
233 |
+
# e.g., for hidden_stride=3, this leads to a token length reduction: 729 -> 81 for siglip
|
234 |
+
if self.config.hidden_stride > 1:
|
235 |
+
n, l, d = features.shape # this `d` maybe different from the above `d
|
236 |
+
sqrt_l = int(l ** 0.5)
|
237 |
+
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
|
238 |
+
features = features.reshape(n, sqrt_l, sqrt_l, d)
|
239 |
+
pl = (self.config.hidden_stride - (sqrt_l % self.config.hidden_stride)) % self.config.hidden_stride
|
240 |
+
features = pad(features, (0, 0, 0, pl, 0, pl), "constant", 0)
|
241 |
+
sqrt_l += pl
|
242 |
+
features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
|
243 |
+
sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
|
244 |
+
features = features.permute(0, 1, 3, 2, 4, 5) # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
|
245 |
+
features = features.flatten(3) # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
|
246 |
+
features = features.reshape(
|
247 |
+
n, -1, self.config.hidden_stride * self.config.hidden_stride * d)
|
248 |
+
|
249 |
+
return features
|
250 |
+
|
251 |
+
def forward(self, pixel_values) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
|
252 |
+
features = self.encode(pixel_values)
|
253 |
+
logits = self.head(features)
|
254 |
+
tokens = self.tokenize(logits)
|
255 |
+
# tokens' shape is [BatchSize, #Token, VocabSize-5], so padding with [BatchSize, #Token, 5], after
|
256 |
+
# which, tokens' shape should become [BatchSize, #Token, VocabSize]
|
257 |
+
batch_size, token_len, _ = tokens.shape
|
258 |
+
padding_tensor = torch.zeros(size=(batch_size, token_len, len(IMAGE_INDICATOR_IDS)),
|
259 |
+
dtype=tokens.dtype,
|
260 |
+
device=tokens.device,
|
261 |
+
layout=tokens.layout,
|
262 |
+
requires_grad=False)
|
263 |
+
tokens = torch.cat((tokens, padding_tensor), dim=2)
|
264 |
+
return tokens
|
ovis/model/visual_tokenizer/clip_visual_tokenizer.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, AutoModel
|
2 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor
|
3 |
+
from .base_visual_tokenizer import BaseVisualTokenizerConfig, BaseVisualTokenizer
|
4 |
+
|
5 |
+
MODEL_TYPE = "clip_visual_tokenizer"
|
6 |
+
|
7 |
+
|
8 |
+
class ClipVisualTokenizerConfig(BaseVisualTokenizerConfig):
|
9 |
+
model_type = MODEL_TYPE
|
10 |
+
|
11 |
+
def __init__(self, **kwargs):
|
12 |
+
super().__init__(**kwargs)
|
13 |
+
if self.depths:
|
14 |
+
assert len(self.depths) == 1
|
15 |
+
self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
|
16 |
+
|
17 |
+
|
18 |
+
class ClipVisualTokenizer(BaseVisualTokenizer):
|
19 |
+
config_class = ClipVisualTokenizerConfig
|
20 |
+
supports_gradient_checkpointing = True
|
21 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
22 |
+
_image_processor_class = CLIPImageProcessor
|
23 |
+
_image_processor_kwargs = dict(do_center_crop=False)
|
24 |
+
_backbone_class = CLIPVisionModel
|
25 |
+
_backbone_name_or_path = "openai/clip-vit-large-patch14-336"
|
26 |
+
|
27 |
+
def get_monitor_tensors(self):
|
28 |
+
return dict(
|
29 |
+
backbone_bottom=self.backbone.vision_model.encoder.layers[0].self_attn.k_proj.weight,
|
30 |
+
backbone_top=self.backbone.vision_model.encoder.layers[-1].self_attn.out_proj.weight,
|
31 |
+
head=self.head[0].weight
|
32 |
+
)
|
33 |
+
|
34 |
+
def get_image_size(self):
|
35 |
+
height = self.image_processor.crop_size["height"]
|
36 |
+
width = self.image_processor.crop_size["width"]
|
37 |
+
return height, width
|
38 |
+
|
39 |
+
|
40 |
+
AutoConfig.register(MODEL_TYPE, ClipVisualTokenizerConfig)
|
41 |
+
AutoModel.register(ClipVisualTokenizerConfig, ClipVisualTokenizer)
|
ovis/model/visual_tokenizer/siglip_visual_tokenizer.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, AutoModel
|
2 |
+
from transformers import SiglipVisionModel, SiglipImageProcessor
|
3 |
+
from .base_visual_tokenizer import BaseVisualTokenizerConfig, BaseVisualTokenizer
|
4 |
+
|
5 |
+
MODEL_TYPE = "siglip_visual_tokenizer"
|
6 |
+
|
7 |
+
|
8 |
+
class SiglipVisualTokenizerConfig(BaseVisualTokenizerConfig):
|
9 |
+
model_type = MODEL_TYPE
|
10 |
+
|
11 |
+
def __init__(self, **kwargs):
|
12 |
+
super().__init__(**kwargs)
|
13 |
+
if self.drop_cls_token:
|
14 |
+
self.drop_cls_token = False
|
15 |
+
if self.depths:
|
16 |
+
assert len(self.depths) == 1
|
17 |
+
self.backbone_kwargs['num_hidden_layers'] = self.depths[0]
|
18 |
+
|
19 |
+
|
20 |
+
class SiglipVisualTokenizer(BaseVisualTokenizer):
|
21 |
+
config_class = SiglipVisualTokenizerConfig
|
22 |
+
supports_gradient_checkpointing = True
|
23 |
+
_no_split_modules = ["SiglipVisionTransformer"]
|
24 |
+
_image_processor_class = SiglipImageProcessor
|
25 |
+
_image_processor_kwargs = {}
|
26 |
+
_backbone_class = SiglipVisionModel
|
27 |
+
_backbone_name_or_path = "google/siglip-so400m-patch14-384"
|
28 |
+
|
29 |
+
def get_monitor_tensors(self):
|
30 |
+
return dict(
|
31 |
+
backbone_bottom=self.backbone.vision_model.encoder.layers[0].self_attn.k_proj.weight,
|
32 |
+
backbone_top=self.backbone.vision_model.encoder.layers[-1].self_attn.out_proj.weight,
|
33 |
+
head=self.head[0].weight
|
34 |
+
)
|
35 |
+
|
36 |
+
def get_image_size(self):
|
37 |
+
height = self.image_processor.size["height"]
|
38 |
+
width = self.image_processor.size["width"]
|
39 |
+
return height, width
|
40 |
+
|
41 |
+
|
42 |
+
AutoConfig.register(MODEL_TYPE, SiglipVisualTokenizerConfig)
|
43 |
+
AutoModel.register(SiglipVisualTokenizerConfig, SiglipVisualTokenizer)
|
ovis/serve/runner.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import field, dataclass
|
2 |
+
from typing import Optional, Union, List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
from ovis.model.modeling_ovis import Ovis
|
8 |
+
from ovis.util.constants import IMAGE_TOKEN
|
9 |
+
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class RunnerArguments:
|
13 |
+
model_path: str
|
14 |
+
max_new_tokens: int = field(default=512)
|
15 |
+
do_sample: bool = field(default=False)
|
16 |
+
top_p: Optional[float] = field(default=None)
|
17 |
+
top_k: Optional[int] = field(default=None)
|
18 |
+
temperature: Optional[float] = field(default=None)
|
19 |
+
max_partition: int = field(default=9)
|
20 |
+
|
21 |
+
|
22 |
+
class OvisRunner:
|
23 |
+
def __init__(self, args: RunnerArguments):
|
24 |
+
self.model_path = args.model_path
|
25 |
+
self.dtype = torch.bfloat16
|
26 |
+
self.device = torch.cuda.current_device()
|
27 |
+
self.dtype = torch.bfloat16
|
28 |
+
self.model = Ovis.from_pretrained(self.model_path, torch_dtype=self.dtype, multimodal_max_length=8192)
|
29 |
+
self.model = self.model.eval().to(device=self.device)
|
30 |
+
self.eos_token_id = self.model.generation_config.eos_token_id
|
31 |
+
self.text_tokenizer = self.model.get_text_tokenizer()
|
32 |
+
self.pad_token_id = self.text_tokenizer.pad_token_id
|
33 |
+
self.visual_tokenizer = self.model.get_visual_tokenizer()
|
34 |
+
self.conversation_formatter = self.model.get_conversation_formatter()
|
35 |
+
self.image_placeholder = IMAGE_TOKEN
|
36 |
+
self.max_partition = args.max_partition
|
37 |
+
self.gen_kwargs = dict(
|
38 |
+
max_new_tokens=args.max_new_tokens,
|
39 |
+
do_sample=args.do_sample,
|
40 |
+
top_p=args.top_p,
|
41 |
+
top_k=args.top_k,
|
42 |
+
temperature=args.temperature,
|
43 |
+
repetition_penalty=None,
|
44 |
+
eos_token_id=self.eos_token_id,
|
45 |
+
pad_token_id=self.pad_token_id,
|
46 |
+
use_cache=True
|
47 |
+
)
|
48 |
+
|
49 |
+
def preprocess(self, inputs: List[Union[Image.Image, str]]):
|
50 |
+
# for single image and single text inputs, ensure image ahead
|
51 |
+
if len(inputs) == 2 and isinstance(inputs[0], str) and isinstance(inputs[1], Image.Image):
|
52 |
+
inputs = reversed(inputs)
|
53 |
+
|
54 |
+
# build query
|
55 |
+
query = ''
|
56 |
+
images = []
|
57 |
+
for data in inputs:
|
58 |
+
if isinstance(data, Image.Image):
|
59 |
+
query += self.image_placeholder + '\n'
|
60 |
+
images.append(data)
|
61 |
+
elif isinstance(data, str):
|
62 |
+
query += data.replace(self.image_placeholder, '')
|
63 |
+
elif data is not None:
|
64 |
+
raise RuntimeError(f'Invalid input type, expected `PIL.Image.Image` or `str`, but got {type(data)}')
|
65 |
+
|
66 |
+
# format conversation
|
67 |
+
prompt, input_ids, pixel_values = self.model.preprocess_inputs(
|
68 |
+
query, images, max_partition=self.max_partition)
|
69 |
+
attention_mask = torch.ne(input_ids, self.text_tokenizer.pad_token_id)
|
70 |
+
input_ids = input_ids.unsqueeze(0).to(device=self.device)
|
71 |
+
attention_mask = attention_mask.unsqueeze(0).to(device=self.device)
|
72 |
+
if pixel_values is not None:
|
73 |
+
pixel_values = [pixel_values.to(device=self.device, dtype=self.dtype)]
|
74 |
+
else:
|
75 |
+
pixel_values = [None]
|
76 |
+
|
77 |
+
return prompt, input_ids, attention_mask, pixel_values
|
78 |
+
|
79 |
+
def run(self, inputs: List[Union[Image.Image, str]]):
|
80 |
+
prompt, input_ids, attention_mask, pixel_values = self.preprocess(inputs)
|
81 |
+
output_ids = self.model.generate(
|
82 |
+
input_ids,
|
83 |
+
pixel_values=pixel_values,
|
84 |
+
attention_mask=attention_mask,
|
85 |
+
**self.gen_kwargs
|
86 |
+
)
|
87 |
+
output = self.text_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
88 |
+
input_token_len = input_ids.shape[1]
|
89 |
+
output_token_len = output_ids.shape[1]
|
90 |
+
response = dict(
|
91 |
+
prompt=prompt,
|
92 |
+
output=output,
|
93 |
+
prompt_tokens=input_token_len,
|
94 |
+
total_tokens=input_token_len + output_token_len
|
95 |
+
)
|
96 |
+
return response
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == '__main__':
|
100 |
+
runner_args = RunnerArguments(model_path='<model_path>')
|
101 |
+
runner = OvisRunner(runner_args)
|
102 |
+
image = Image.open('<image_path>')
|
103 |
+
text = '<prompt>'
|
104 |
+
response = runner.run([image, text])
|
105 |
+
print(response['output'])
|
ovis/serve/server.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os.path
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from gradio.components import Textbox, Image
|
6 |
+
|
7 |
+
from ovis.serve.runner import RunnerArguments, OvisRunner
|
8 |
+
|
9 |
+
|
10 |
+
class Server:
|
11 |
+
def __init__(self, runner: OvisRunner):
|
12 |
+
self.runner = runner
|
13 |
+
|
14 |
+
def __call__(self, image, text):
|
15 |
+
response = self.runner.run([image, text])
|
16 |
+
output = response["output"]
|
17 |
+
return output
|
18 |
+
|
19 |
+
|
20 |
+
if __name__ == '__main__':
|
21 |
+
parser = argparse.ArgumentParser(description='Ovis Server')
|
22 |
+
parser.add_argument('--model_path', type=str, required=True)
|
23 |
+
parser.add_argument('--flagging_dir', type=str, default=os.path.expanduser('~/ovis-flagged'))
|
24 |
+
parser.add_argument('--max_partition', type=int, default=9)
|
25 |
+
parser.add_argument('--port', type=int, required=True)
|
26 |
+
args = parser.parse_args()
|
27 |
+
|
28 |
+
os.makedirs(args.flagging_dir, exist_ok=True)
|
29 |
+
runner_args = RunnerArguments(
|
30 |
+
model_path=args.model_path,
|
31 |
+
max_partition=args.max_partition
|
32 |
+
)
|
33 |
+
demo = gr.Interface(
|
34 |
+
fn=Server(OvisRunner(runner_args)),
|
35 |
+
inputs=[Image(type='pil', label='image'),
|
36 |
+
Textbox(placeholder='Enter your text here...', label='prompt')],
|
37 |
+
outputs=gr.Markdown(),
|
38 |
+
title=args.model_path.split('/')[-1],
|
39 |
+
flagging_dir=args.flagging_dir
|
40 |
+
)
|
41 |
+
demo.launch(server_port=args.port)
|
ovis/train/__init__.py
ADDED
File without changes
|
ovis/train/arguments.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import transformers
|
5 |
+
|
6 |
+
|
7 |
+
@dataclass
|
8 |
+
class ModelArguments:
|
9 |
+
llm_name_or_path: Optional[str] = field(default=None)
|
10 |
+
visual_tokenizer_type: str = field(default=None)
|
11 |
+
visual_vocab_size: int = field(default=8192)
|
12 |
+
visual_drop_cls_token: bool = field(default=False)
|
13 |
+
visual_tokenize_function: str = field(default='softmax')
|
14 |
+
visual_tau: float = field(default=1.0)
|
15 |
+
visual_depths: Optional[str] = field(default=None)
|
16 |
+
visual_hidden_stride: int = field(default=1)
|
17 |
+
multimodal_max_length: int = field(default=2048)
|
18 |
+
conversation_formatter_class: str = field(default=None)
|
19 |
+
pad_token_id: Optional[int] = field(default=None)
|
20 |
+
llm_attn_implementation: Optional[str] = field(default=None)
|
21 |
+
disable_tie_weight: bool = field(default=False)
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class TrainingArguments(transformers.TrainingArguments):
|
26 |
+
dataset_names: Optional[str] = field(default=None) # a|b|c
|
27 |
+
dataset_info: Optional[str] = field(default='dataset_info_v1_6')
|
28 |
+
ovis_pretrained_path: Optional[str] = field(default=None)
|
29 |
+
visual_tokenizer_pretrained_path: Optional[str] = field(default=None)
|
30 |
+
caption_template: Optional[str] = field(default=None)
|
31 |
+
stage: Optional[int] = field(default=None)
|
32 |
+
train_modules: Optional[str] = field(default=None)
|
33 |
+
cache_dir: Optional[str] = field(default=None)
|
34 |
+
optim: str = field(default="adamw_torch")
|
35 |
+
visual_max_tau: float = field(default=5.0)
|
36 |
+
visual_min_tau: float = field(default=0.05)
|
37 |
+
save_safetensors: bool = field(default=True)
|
38 |
+
monitor_step: int = field(default=100)
|
39 |
+
vte_re_init: bool = field(default=False)
|
40 |
+
text_max_length: int = field(default=1024)
|
41 |
+
max_partitions: str = field(default="9|1|1")
|
42 |
+
|
43 |
+
def __post_init__(self):
|
44 |
+
if self.gradient_checkpointing:
|
45 |
+
self.gradient_checkpointing_kwargs = {"use_reentrant": False}
|
46 |
+
if self.stage < 3:
|
47 |
+
self.save_safetensors = False
|
48 |
+
super().__post_init__()
|
ovis/train/callback.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import deepspeed
|
2 |
+
import torch
|
3 |
+
from transformers import TrainerCallback, TrainingArguments, TrainerState, TrainerControl
|
4 |
+
|
5 |
+
from ovis.util.constants import END_LINE, BEGIN_LINE
|
6 |
+
from ovis.util.utils import rank0_print
|
7 |
+
|
8 |
+
|
9 |
+
class TuneTauCallback(TrainerCallback):
|
10 |
+
def on_step_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
|
11 |
+
visual_tokenizer = kwargs['model'].get_visual_tokenizer()
|
12 |
+
current_step = state.global_step
|
13 |
+
max_step = state.max_steps
|
14 |
+
ratio = current_step / max_step
|
15 |
+
visual_tokenizer.config.tau = args.visual_max_tau - (args.visual_max_tau - args.visual_min_tau) * ratio
|
16 |
+
|
17 |
+
|
18 |
+
class MonitorCallback(TrainerCallback):
|
19 |
+
def _monitoring(self, model, step):
|
20 |
+
with torch.no_grad():
|
21 |
+
with deepspeed.zero.GatheredParameters(model.get_monitor_tensors().values()):
|
22 |
+
for k, v in model.get_monitor_tensors().items():
|
23 |
+
rank0_print(BEGIN_LINE)
|
24 |
+
rank0_print(f'{k} @ step {step} with sum: {v.sum().item()} and content: ')
|
25 |
+
rank0_print(v)
|
26 |
+
rank0_print(END_LINE)
|
27 |
+
|
28 |
+
def on_step_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
|
29 |
+
model = kwargs['model']
|
30 |
+
step = state.global_step
|
31 |
+
if step % args.monitor_step == 0 or step == 10: # monitor at step 10 for fast check
|
32 |
+
self._monitoring(model, step)
|
33 |
+
|
34 |
+
def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
|
35 |
+
model = kwargs['model']
|
36 |
+
step = state.global_step
|
37 |
+
self._monitoring(model, step)
|
ovis/train/dataset/__init__.py
ADDED
File without changes
|
ovis/train/dataset/caption_dataset.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from datetime import datetime
|
3 |
+
from typing import Dict
|
4 |
+
|
5 |
+
import pandas
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ovis.train.dataset.multimodal_dataset import MultimodalDataset
|
9 |
+
from ovis.util.constants import IMAGE_TOKEN, IGNORE_ID
|
10 |
+
from ovis.util.utils import rank0_print
|
11 |
+
|
12 |
+
|
13 |
+
class CaptionDataset(MultimodalDataset):
|
14 |
+
|
15 |
+
def load(self):
|
16 |
+
rank0_print(f"[{datetime.now()}] Loading dataset {self.name} from {self.meta_file} begin")
|
17 |
+
samples = pandas.read_parquet(self.meta_file, engine='pyarrow')
|
18 |
+
rank0_print(f"[{datetime.now()}] Loading dataset {self.name} end")
|
19 |
+
return samples
|
20 |
+
|
21 |
+
def __getitem__(self, i: int) -> Dict[str, torch.Tensor]:
|
22 |
+
sample = self.samples.iloc[i]
|
23 |
+
text = sample['caption']
|
24 |
+
image_path = sample['image_path']
|
25 |
+
|
26 |
+
# read and preprocess image
|
27 |
+
pixel_values, image_placeholders = self.visual_tokenizer.mock_input()
|
28 |
+
valid_image = False
|
29 |
+
image, e = self.read_image(image_path)
|
30 |
+
if image is None:
|
31 |
+
logging.warning(
|
32 |
+
f'reading image failed with index: {i}, image path: {image_path}, and exception: {e}')
|
33 |
+
else:
|
34 |
+
try:
|
35 |
+
pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image(
|
36 |
+
image, max_partition=self.max_partitions[0])
|
37 |
+
valid_image = True
|
38 |
+
except Exception as e:
|
39 |
+
logging.warning(
|
40 |
+
f'preprocessing image failed with index: {i}, image path: {image_path}, and exception: {e}')
|
41 |
+
|
42 |
+
# preprocess text
|
43 |
+
if text is None:
|
44 |
+
logging.warning(f'text is `None`, index: {i}')
|
45 |
+
text = ""
|
46 |
+
if not valid_image:
|
47 |
+
logging.warning(f'image is not valid, so set text as empty, index: {i}, image path: {image_path}')
|
48 |
+
text = ""
|
49 |
+
text = text.replace(IMAGE_TOKEN, '').strip()
|
50 |
+
head, tail = self.caption_template.split(IMAGE_TOKEN)
|
51 |
+
head_ids = self.text_tokenizer(head, add_special_tokens=False).input_ids
|
52 |
+
tail_ids = self.text_tokenizer(tail, add_special_tokens=False).input_ids
|
53 |
+
text_ids = self.text_tokenizer(text, add_special_tokens=False).input_ids
|
54 |
+
input_ids = head_ids + image_placeholders + tail_ids + text_ids
|
55 |
+
labels = [IGNORE_ID] * (len(input_ids) - len(text_ids)) + text_ids
|
56 |
+
|
57 |
+
input_ids = input_ids[:self.text_max_length]
|
58 |
+
labels = labels[:self.text_max_length]
|
59 |
+
|
60 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
61 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
62 |
+
|
63 |
+
return dict(
|
64 |
+
pixel_values=pixel_values,
|
65 |
+
input_ids=input_ids,
|
66 |
+
labels=labels
|
67 |
+
)
|
ovis/train/dataset/conversation_dataset.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
from datetime import datetime
|
5 |
+
from typing import Dict
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from ovis.train.dataset.multimodal_dataset import MultimodalDataset
|
10 |
+
from ovis.util.utils import rank0_print
|
11 |
+
|
12 |
+
|
13 |
+
class ConversationDataset(MultimodalDataset):
|
14 |
+
def load(self):
|
15 |
+
rank0_print(f"[{datetime.now()}] Loading dataset {self.name} from {self.meta_file} begin")
|
16 |
+
with open(self.meta_file, 'r', encoding='utf-8') as f:
|
17 |
+
samples = json.load(f)
|
18 |
+
rank0_print(f'#samples: {len(samples)}')
|
19 |
+
rank0_print(f'sample: {samples[0]}')
|
20 |
+
rank0_print(f"[{datetime.now()}] Loading dataset {self.name} end")
|
21 |
+
return samples
|
22 |
+
|
23 |
+
def __getitem__(self, i: int) -> Dict[str, torch.Tensor]:
|
24 |
+
sample = self.samples[i]
|
25 |
+
conversations = copy.deepcopy(sample["conversations"])
|
26 |
+
|
27 |
+
images = None
|
28 |
+
max_partition = None
|
29 |
+
if 'image' in sample:
|
30 |
+
image_paths = sample['image']
|
31 |
+
if isinstance(image_paths, str):
|
32 |
+
image_paths = [image_paths]
|
33 |
+
images = []
|
34 |
+
for image_path in image_paths:
|
35 |
+
image, e = self.read_image(image_path)
|
36 |
+
if image is None:
|
37 |
+
logging.warning(
|
38 |
+
f'reading image failed with index: {i}, image path: {image_path}, and exception: {e}')
|
39 |
+
images = None
|
40 |
+
break
|
41 |
+
images.append(image)
|
42 |
+
elif 'video' in sample:
|
43 |
+
raise RuntimeError('video is to be supported')
|
44 |
+
|
45 |
+
if images:
|
46 |
+
max_partition = self.max_partitions[0] if len(images) == 1 else self.max_partitions[1]
|
47 |
+
|
48 |
+
prompt, input_ids, pixel_values, labels = self.model.preprocess_inputs(
|
49 |
+
conversations,
|
50 |
+
images,
|
51 |
+
max_partition=max_partition,
|
52 |
+
generation_preface=None,
|
53 |
+
return_labels=True,
|
54 |
+
propagate_exception=False
|
55 |
+
)
|
56 |
+
|
57 |
+
if pixel_values is None:
|
58 |
+
pixel_values, _ = self.visual_tokenizer.mock_input()
|
59 |
+
|
60 |
+
input_ids = input_ids[:self.text_max_length]
|
61 |
+
labels = labels[:self.text_max_length]
|
62 |
+
|
63 |
+
return dict(
|
64 |
+
pixel_values=pixel_values,
|
65 |
+
input_ids=input_ids,
|
66 |
+
labels=labels
|
67 |
+
)
|
ovis/train/dataset/multimodal_dataset.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from typing import Dict, Sequence, Union, List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from torch.utils.data import Dataset
|
8 |
+
from transformers import PreTrainedTokenizer
|
9 |
+
|
10 |
+
from ovis.model.modeling_ovis import Ovis
|
11 |
+
from ovis.train.arguments import TrainingArguments
|
12 |
+
from ovis.util.constants import IGNORE_ID
|
13 |
+
|
14 |
+
|
15 |
+
class MultimodalDataset(Dataset):
|
16 |
+
def __init__(self, name: str, info: Dict, model: Ovis, training_args: TrainingArguments):
|
17 |
+
self.name = name
|
18 |
+
self.meta_file = info['meta_file']
|
19 |
+
self.image_dir = info['image_dir']
|
20 |
+
self.caption_template = info.get('caption_template', None)
|
21 |
+
self.text_tokenizer = model.get_text_tokenizer()
|
22 |
+
self.visual_tokenizer = model.get_visual_tokenizer()
|
23 |
+
self.image_height, self.image_width = self.visual_tokenizer.get_image_size()
|
24 |
+
self.model = model
|
25 |
+
self.text_max_length = training_args.text_max_length
|
26 |
+
self.max_partitions = [int(m.strip()) for m in training_args.max_partitions.split('|')]
|
27 |
+
self.samples = self.load()
|
28 |
+
|
29 |
+
def load(self):
|
30 |
+
raise NotImplementedError
|
31 |
+
|
32 |
+
def __getitem__(self, i: int) -> Dict[str, torch.Tensor]:
|
33 |
+
raise NotImplementedError
|
34 |
+
|
35 |
+
def __len__(self):
|
36 |
+
return len(self.samples)
|
37 |
+
|
38 |
+
def read_image(self, path):
|
39 |
+
try:
|
40 |
+
full_path = os.path.join(self.image_dir, path)
|
41 |
+
image = Image.open(full_path).convert('RGB')
|
42 |
+
return image, None
|
43 |
+
except Exception as e:
|
44 |
+
return None, e
|
45 |
+
|
46 |
+
|
47 |
+
class DataCollatorForMultimodalDataset:
|
48 |
+
def __init__(self, text_tokenizer: PreTrainedTokenizer):
|
49 |
+
self.text_tokenizer = text_tokenizer
|
50 |
+
|
51 |
+
def __call__(self, instances: Sequence[Dict]) -> Dict[str, Union[torch.Tensor, List[torch.Tensor]]]:
|
52 |
+
pixel_values, input_ids, labels = tuple([instance[key] for instance in instances]
|
53 |
+
for key in ("pixel_values", "input_ids", "labels"))
|
54 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
55 |
+
input_ids,
|
56 |
+
batch_first=True,
|
57 |
+
padding_value=self.text_tokenizer.pad_token_id)
|
58 |
+
attention_mask = torch.ne(input_ids, self.text_tokenizer.pad_token_id)
|
59 |
+
labels = torch.nn.utils.rnn.pad_sequence(
|
60 |
+
labels,
|
61 |
+
batch_first=True,
|
62 |
+
padding_value=IGNORE_ID)
|
63 |
+
num_valid_label = torch.not_equal(labels, IGNORE_ID).sum().item()
|
64 |
+
if num_valid_label == 0:
|
65 |
+
logging.warning(
|
66 |
+
f'[DataCollatorForMultimodalDataset] All labels in a batch are ignored, which may lead to training instability\n{input_ids=}\n{attention_mask=}\n{labels=}')
|
67 |
+
return dict(
|
68 |
+
input_ids=input_ids,
|
69 |
+
attention_mask=attention_mask,
|
70 |
+
labels=labels,
|
71 |
+
pixel_values=pixel_values
|
72 |
+
)
|
ovis/train/train.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
|
5 |
+
import deepspeed
|
6 |
+
import torch
|
7 |
+
import transformers
|
8 |
+
from deepspeed import get_accelerator
|
9 |
+
from torch.utils.data import ConcatDataset
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, AutoConfig
|
11 |
+
from transformers import Trainer
|
12 |
+
from transformers.integrations.deepspeed import unset_hf_deepspeed_config, set_hf_deepspeed_config
|
13 |
+
|
14 |
+
from callback import TuneTauCallback, MonitorCallback
|
15 |
+
from ovis.model.configuration_ovis import OvisConfig
|
16 |
+
from ovis.model.modeling_ovis import Ovis
|
17 |
+
from ovis.train.arguments import ModelArguments, TrainingArguments
|
18 |
+
from ovis.train.dataset.caption_dataset import CaptionDataset
|
19 |
+
from ovis.train.dataset.conversation_dataset import ConversationDataset
|
20 |
+
from ovis.train.dataset.multimodal_dataset import DataCollatorForMultimodalDataset
|
21 |
+
from ovis.util.constants import BEGIN_LINE, END_LINE
|
22 |
+
from ovis.util.utils import smart_unit, rank0_print
|
23 |
+
|
24 |
+
|
25 |
+
def train():
|
26 |
+
# parse args
|
27 |
+
parser = transformers.HfArgumentParser(
|
28 |
+
(ModelArguments, TrainingArguments))
|
29 |
+
model_args, training_args = parser.parse_args_into_dataclasses()
|
30 |
+
|
31 |
+
# save args to checkpoint dir
|
32 |
+
with training_args.main_process_first(local=False):
|
33 |
+
if training_args.process_index == 0:
|
34 |
+
def args2dict(args):
|
35 |
+
return {k: str(v) for k, v in args.__dict__.items()}
|
36 |
+
|
37 |
+
args_log = json.dumps(dict(
|
38 |
+
model_args=args2dict(model_args),
|
39 |
+
training_args=args2dict(training_args)
|
40 |
+
), ensure_ascii=False, indent=2)
|
41 |
+
print(args_log)
|
42 |
+
os.makedirs(training_args.output_dir, exist_ok=True)
|
43 |
+
with open(os.path.join(training_args.output_dir, 'model_training_args.json'), 'w',
|
44 |
+
encoding='utf-8') as f:
|
45 |
+
f.write(args_log + '\n')
|
46 |
+
|
47 |
+
# construct or load ovis model
|
48 |
+
if not training_args.ovis_pretrained_path: # construct model (S1)
|
49 |
+
# 1. construct ovis config
|
50 |
+
ovis_config = OvisConfig(
|
51 |
+
multimodal_max_length=model_args.multimodal_max_length,
|
52 |
+
conversation_formatter_class=model_args.conversation_formatter_class,
|
53 |
+
llm_attn_implementation=model_args.llm_attn_implementation
|
54 |
+
)
|
55 |
+
# 2. load pretrained llm and text tokenizer
|
56 |
+
attn_kwargs = dict()
|
57 |
+
if model_args.llm_attn_implementation:
|
58 |
+
attn_kwargs['attn_implementation'] = model_args.llm_attn_implementation
|
59 |
+
llm = AutoModelForCausalLM.from_pretrained(model_args.llm_name_or_path, **attn_kwargs)
|
60 |
+
text_tokenizer = AutoTokenizer.from_pretrained(model_args.llm_name_or_path)
|
61 |
+
if text_tokenizer.pad_token_id is None and model_args.pad_token_id is not None:
|
62 |
+
text_tokenizer.pad_token_id = model_args.pad_token_id
|
63 |
+
# 3. construct visual tokenizer
|
64 |
+
# deepspeed zero.Init with bfloat16 fail for visual_tokenizer, so temporarily disable zero.Init here
|
65 |
+
unset_hf_deepspeed_config()
|
66 |
+
if training_args.visual_tokenizer_pretrained_path is not None:
|
67 |
+
visual_tokenizer = AutoModel.from_pretrained(
|
68 |
+
training_args.visual_tokenizer_pretrained_path,
|
69 |
+
image_processor_name_or_path=training_args.visual_tokenizer_pretrained_path
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
visual_tokenizer_config = AutoConfig.for_model(
|
73 |
+
model_type=model_args.visual_tokenizer_type + "_visual_tokenizer",
|
74 |
+
vocab_size=model_args.visual_vocab_size,
|
75 |
+
tokenize_function=model_args.visual_tokenize_function,
|
76 |
+
tau=model_args.visual_tau,
|
77 |
+
depths=model_args.visual_depths,
|
78 |
+
drop_cls_token=model_args.visual_drop_cls_token,
|
79 |
+
hidden_stride=model_args.visual_hidden_stride,
|
80 |
+
)
|
81 |
+
visual_tokenizer = AutoModel.from_config(visual_tokenizer_config, train_from_scratch=True)
|
82 |
+
visual_tokenizer = visual_tokenizer.to(
|
83 |
+
device=torch.device(get_accelerator().device_name(os.getenv("LOCAL_RANK"))))
|
84 |
+
if getattr(training_args, 'hf_deepspeed_config', None) is not None:
|
85 |
+
set_hf_deepspeed_config(training_args.hf_deepspeed_config)
|
86 |
+
# 4. construct ovis model
|
87 |
+
model = Ovis(ovis_config, llm=llm, text_tokenizer=text_tokenizer, visual_tokenizer=visual_tokenizer,
|
88 |
+
train_from_scratch=True)
|
89 |
+
else: # load pretrained ovis model
|
90 |
+
model, loading_info = Ovis.from_pretrained(training_args.ovis_pretrained_path,
|
91 |
+
multimodal_max_length=model_args.multimodal_max_length,
|
92 |
+
output_loading_info=True)
|
93 |
+
rank0_print(BEGIN_LINE)
|
94 |
+
rank0_print(f'Loading info of Ovis:\n{loading_info}')
|
95 |
+
rank0_print(END_LINE)
|
96 |
+
training_args.vte_re_init = False
|
97 |
+
|
98 |
+
model.get_llm().config.use_cache = False
|
99 |
+
model.config.use_cache = False
|
100 |
+
text_tokenizer = model.get_text_tokenizer()
|
101 |
+
|
102 |
+
rank0_print(BEGIN_LINE)
|
103 |
+
rank0_print(f'model.config:\n{model.config}')
|
104 |
+
rank0_print(END_LINE)
|
105 |
+
|
106 |
+
# maybe re-init vte
|
107 |
+
if training_args.vte_re_init:
|
108 |
+
with deepspeed.zero.GatheredParameters([model.get_wte().weight]):
|
109 |
+
mean = model.get_wte().weight.mean().item()
|
110 |
+
std = model.get_wte().weight.std().item()
|
111 |
+
rank0_print(f'Statistics of embedding table of LLM: {mean=}, {std=}')
|
112 |
+
model.re_init_vte(mean, std)
|
113 |
+
|
114 |
+
# select train modules
|
115 |
+
model.requires_grad_(False)
|
116 |
+
for module in training_args.train_modules.split('|'):
|
117 |
+
if module == 'all':
|
118 |
+
model.requires_grad_(True)
|
119 |
+
elif module == 'llm':
|
120 |
+
model.get_llm().requires_grad_(True)
|
121 |
+
elif module == 'visual_tokenizer':
|
122 |
+
model.get_visual_tokenizer().requires_grad_(True)
|
123 |
+
elif module == 'visual_tokenizer.backbone':
|
124 |
+
model.get_visual_tokenizer().get_backbone().requires_grad_(True)
|
125 |
+
elif module.startswith('visual_tokenizer.backbone.layer.'):
|
126 |
+
layer_index = int(module[len('visual_tokenizer.backbone.layer.'):])
|
127 |
+
layer = model.get_visual_tokenizer().get_backbone_layer(layer_index)
|
128 |
+
layer.requires_grad_(True)
|
129 |
+
elif module == 'visual_tokenizer.head':
|
130 |
+
model.get_visual_tokenizer().get_head().requires_grad_(True)
|
131 |
+
elif module == 'vte':
|
132 |
+
model.get_vte().requires_grad_(True)
|
133 |
+
else:
|
134 |
+
raise ValueError(f'Invalid train module name: {module}')
|
135 |
+
|
136 |
+
rank0_print(BEGIN_LINE)
|
137 |
+
rank0_print('Parameters to train:')
|
138 |
+
for name, param in model.named_parameters():
|
139 |
+
if param.requires_grad:
|
140 |
+
rank0_print(name)
|
141 |
+
rank0_print(f'LLM\'s attn implementation: {model.get_llm().config._attn_implementation}')
|
142 |
+
rank0_print(END_LINE)
|
143 |
+
|
144 |
+
# construct data module
|
145 |
+
datasets = []
|
146 |
+
dataset_info_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
147 |
+
f'dataset/{training_args.dataset_info}.json')
|
148 |
+
with open(dataset_info_path, 'r', encoding='utf-8') as f:
|
149 |
+
dataset_info = json.load(f)
|
150 |
+
for name in training_args.dataset_names.split('|'):
|
151 |
+
info = dataset_info[name]
|
152 |
+
data_format = info['data_format']
|
153 |
+
if data_format == 'caption':
|
154 |
+
dataset = CaptionDataset(name, info, model, training_args)
|
155 |
+
elif data_format == 'conversation':
|
156 |
+
dataset = ConversationDataset(name, info, model, training_args)
|
157 |
+
else:
|
158 |
+
raise ValueError(f'Invalid data format `{data_format}` for dataset `{name}`')
|
159 |
+
datasets.append(dataset)
|
160 |
+
data_module = dict(
|
161 |
+
train_dataset=ConcatDataset(datasets),
|
162 |
+
data_collator=DataCollatorForMultimodalDataset(text_tokenizer)
|
163 |
+
)
|
164 |
+
|
165 |
+
# train
|
166 |
+
train_callbacks = [MonitorCallback]
|
167 |
+
if model_args.visual_tokenize_function == 'gumbel_argmax':
|
168 |
+
train_callbacks.append(TuneTauCallback)
|
169 |
+
trainer = Trainer(
|
170 |
+
model=model,
|
171 |
+
args=training_args,
|
172 |
+
callbacks=train_callbacks,
|
173 |
+
**data_module
|
174 |
+
)
|
175 |
+
rank0_print(BEGIN_LINE)
|
176 |
+
rank0_print('Dataset sample tensor:')
|
177 |
+
rank0_print(data_module['train_dataset'][0])
|
178 |
+
rank0_print(END_LINE)
|
179 |
+
rank0_print(BEGIN_LINE)
|
180 |
+
rank0_print('Dataset sample input_ids decoding:')
|
181 |
+
rank0_print(text_tokenizer.decode([x for x in data_module['train_dataset'][0]['input_ids'] if x >= 0]))
|
182 |
+
rank0_print(END_LINE)
|
183 |
+
rank0_print(BEGIN_LINE)
|
184 |
+
rank0_print('Dataset sample labels decoding:')
|
185 |
+
rank0_print(text_tokenizer.decode([x for x in data_module['train_dataset'][0]['labels'] if x >= 0]))
|
186 |
+
rank0_print(END_LINE)
|
187 |
+
rank0_print(BEGIN_LINE)
|
188 |
+
rank0_print(f'#param of model: {smart_unit(model.num_parameters())}')
|
189 |
+
rank0_print(f'#param of llm: {smart_unit(model.get_llm().num_parameters())}')
|
190 |
+
rank0_print(f'#param of visual_tokenizer: {smart_unit(model.get_visual_tokenizer().num_parameters())}')
|
191 |
+
rank0_print(f'#param of vte: {smart_unit(model.get_vte().weight.numel())}')
|
192 |
+
rank0_print(END_LINE)
|
193 |
+
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
|
194 |
+
trainer.train(resume_from_checkpoint=True)
|
195 |
+
else:
|
196 |
+
trainer.train()
|
197 |
+
trainer.save_state()
|
198 |
+
|
199 |
+
# save model
|
200 |
+
model.get_llm().config.use_cache = True
|
201 |
+
model.config.use_cache = True
|
202 |
+
trainer.save_model()
|
203 |
+
|
204 |
+
|
205 |
+
if __name__ == '__main__':
|
206 |
+
train()
|
ovis/util/__init__.py
ADDED
File without changes
|
ovis/util/constants.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model Constants
|
2 |
+
IGNORE_ID = -100
|
3 |
+
IMAGE_TOKEN_ID = -200
|
4 |
+
IMAGE_TOKEN = "<image>"
|
5 |
+
|
6 |
+
IMAGE_ATOM_ID = -300
|
7 |
+
IMAGE_INDICATOR_IDS = [-301, -302, -303, -304, -305]
|
8 |
+
|
9 |
+
# Log & Print
|
10 |
+
BEGIN_LINE = '========================************========================'
|
11 |
+
END_LINE = '------------------------------------------------------------'
|
ovis/util/utils.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from importlib import import_module
|
3 |
+
|
4 |
+
|
5 |
+
def rank0_print(*args):
|
6 |
+
if int(os.getenv("LOCAL_PROCESS_RANK", os.getenv("LOCAL_RANK", 0))) == 0:
|
7 |
+
print(*args)
|
8 |
+
|
9 |
+
|
10 |
+
def smart_unit(num):
|
11 |
+
if num / 1.0e9 >= 1:
|
12 |
+
return f'{num / 1.0e9:.2f}B'
|
13 |
+
else:
|
14 |
+
return f'{num / 1.0e6:.2f}M'
|
15 |
+
|
16 |
+
|
17 |
+
def import_class_from_string(full_class_string):
|
18 |
+
# Split the path to get separate module and class names
|
19 |
+
module_path, _, class_name = full_class_string.rpartition('.')
|
20 |
+
|
21 |
+
# Import the module using the module path
|
22 |
+
module = import_module(module_path)
|
23 |
+
|
24 |
+
# Get the class from the imported module
|
25 |
+
cls = getattr(module, class_name)
|
26 |
+
return cls
|