Spaces:
Sleeping
Sleeping
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. | |
# | |
# This work is made available under the Nvidia Source Code License-NC. | |
# To view a copy of this license, visit | |
# https://nvlabs.github.io/stylegan2/license.html | |
"""Helper for adding automatically tracked values to Tensorboard. | |
Autosummary creates an identity op that internally keeps track of the input | |
values and automatically shows up in TensorBoard. The reported value | |
represents an average over input components. The average is accumulated | |
constantly over time and flushed when save_summaries() is called. | |
Notes: | |
- The output tensor must be used as an input for something else in the | |
graph. Otherwise, the autosummary op will not get executed, and the average | |
value will not get accumulated. | |
- It is perfectly fine to include autosummaries with the same name in | |
several places throughout the graph, even if they are executed concurrently. | |
- It is ok to also pass in a python scalar or numpy array. In this case, it | |
is added to the average immediately. | |
""" | |
from collections import OrderedDict | |
import numpy as np | |
import tensorflow as tf | |
from tensorboard import summary as summary_lib | |
from tensorboard.plugins.custom_scalar import layout_pb2 | |
from . import tfutil | |
from .tfutil import TfExpression | |
from .tfutil import TfExpressionEx | |
# Enable "Custom scalars" tab in TensorBoard for advanced formatting. | |
# Disabled by default to reduce tfevents file size. | |
enable_custom_scalars = False | |
_dtype = tf.float64 | |
_vars = OrderedDict() # name => [var, ...] | |
_immediate = OrderedDict() # name => update_op, update_value | |
_finalized = False | |
_merge_op = None | |
def _create_var(name: str, value_expr: TfExpression) -> TfExpression: | |
"""Internal helper for creating autosummary accumulators.""" | |
assert not _finalized | |
name_id = name.replace("/", "_") | |
v = tf.cast(value_expr, _dtype) | |
if v.shape.is_fully_defined(): | |
size = np.prod(v.shape.as_list()) | |
size_expr = tf.constant(size, dtype=_dtype) | |
else: | |
size = None | |
size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype)) | |
if size == 1: | |
if v.shape.ndims != 0: | |
v = tf.reshape(v, []) | |
v = [size_expr, v, tf.square(v)] | |
else: | |
v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))] | |
v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype)) | |
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None): | |
var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)] | |
update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v)) | |
if name in _vars: | |
_vars[name].append(var) | |
else: | |
_vars[name] = [var] | |
return update_op | |
def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx: | |
"""Create a new autosummary. | |
Args: | |
name: Name to use in TensorBoard | |
value: TensorFlow expression or python value to track | |
passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node. | |
Example use of the passthru mechanism: | |
n = autosummary('l2loss', loss, passthru=n) | |
This is a shorthand for the following code: | |
with tf.control_dependencies([autosummary('l2loss', loss)]): | |
n = tf.identity(n) | |
""" | |
tfutil.assert_tf_initialized() | |
name_id = name.replace("/", "_") | |
if tfutil.is_tf_expression(value): | |
with tf.name_scope("summary_" + name_id), tf.device(value.device): | |
condition = tf.convert_to_tensor(condition, name='condition') | |
update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op) | |
with tf.control_dependencies([update_op]): | |
return tf.identity(value if passthru is None else passthru) | |
else: # python scalar or numpy array | |
assert not tfutil.is_tf_expression(passthru) | |
assert not tfutil.is_tf_expression(condition) | |
if condition: | |
if name not in _immediate: | |
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None): | |
update_value = tf.placeholder(_dtype) | |
update_op = _create_var(name, update_value) | |
_immediate[name] = update_op, update_value | |
update_op, update_value = _immediate[name] | |
tfutil.run(update_op, {update_value: value}) | |
return value if passthru is None else passthru | |
def finalize_autosummaries() -> None: | |
"""Create the necessary ops to include autosummaries in TensorBoard report. | |
Note: This should be done only once per graph. | |
""" | |
global _finalized | |
tfutil.assert_tf_initialized() | |
if _finalized: | |
return None | |
_finalized = True | |
tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list]) | |
# Create summary ops. | |
with tf.device(None), tf.control_dependencies(None): | |
for name, vars_list in _vars.items(): | |
name_id = name.replace("/", "_") | |
with tfutil.absolute_name_scope("Autosummary/" + name_id): | |
moments = tf.add_n(vars_list) | |
moments /= moments[0] | |
with tf.control_dependencies([moments]): # read before resetting | |
reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list] | |
with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting | |
mean = moments[1] | |
std = tf.sqrt(moments[2] - tf.square(moments[1])) | |
tf.summary.scalar(name, mean) | |
if enable_custom_scalars: | |
tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std) | |
tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std) | |
# Setup layout for custom scalars. | |
layout = None | |
if enable_custom_scalars: | |
cat_dict = OrderedDict() | |
for series_name in sorted(_vars.keys()): | |
p = series_name.split("/") | |
cat = p[0] if len(p) >= 2 else "" | |
chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1] | |
if cat not in cat_dict: | |
cat_dict[cat] = OrderedDict() | |
if chart not in cat_dict[cat]: | |
cat_dict[cat][chart] = [] | |
cat_dict[cat][chart].append(series_name) | |
categories = [] | |
for cat_name, chart_dict in cat_dict.items(): | |
charts = [] | |
for chart_name, series_names in chart_dict.items(): | |
series = [] | |
for series_name in series_names: | |
series.append(layout_pb2.MarginChartContent.Series( | |
value=series_name, | |
lower="xCustomScalars/" + series_name + "/margin_lo", | |
upper="xCustomScalars/" + series_name + "/margin_hi")) | |
margin = layout_pb2.MarginChartContent(series=series) | |
charts.append(layout_pb2.Chart(title=chart_name, margin=margin)) | |
categories.append(layout_pb2.Category(title=cat_name, chart=charts)) | |
layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories)) | |
return layout | |
def save_summaries(file_writer, global_step=None): | |
"""Call FileWriter.add_summary() with all summaries in the default graph, | |
automatically finalizing and merging them on the first call. | |
""" | |
global _merge_op | |
tfutil.assert_tf_initialized() | |
if _merge_op is None: | |
layout = finalize_autosummaries() | |
if layout is not None: | |
file_writer.add_summary(layout) | |
with tf.device(None), tf.control_dependencies(None): | |
_merge_op = tf.summary.merge_all() | |
file_writer.add_summary(_merge_op.eval(), global_step) | |