Spaces:
Sleeping
Sleeping
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. | |
# | |
# This work is made available under the Nvidia Source Code License-NC. | |
# To view a copy of this license, visit | |
# https://nvlabs.github.io/stylegan2/license.html | |
"""Miscellaneous helper utils for Tensorflow.""" | |
import os | |
import numpy as np | |
import tensorflow as tf | |
# Silence deprecation warnings from TensorFlow 1.13 onwards | |
import logging | |
logging.getLogger('tensorflow').setLevel(logging.ERROR) | |
import tensorflow.contrib # requires TensorFlow 1.x! | |
tf.contrib = tensorflow.contrib | |
from typing import Any, Iterable, List, Union | |
TfExpression = Union[tf.Tensor, tf.Variable, tf.Operation] | |
"""A type that represents a valid Tensorflow expression.""" | |
TfExpressionEx = Union[TfExpression, int, float, np.ndarray] | |
"""A type that can be converted to a valid Tensorflow expression.""" | |
def run(*args, **kwargs) -> Any: | |
"""Run the specified ops in the default session.""" | |
assert_tf_initialized() | |
return tf.get_default_session().run(*args, **kwargs) | |
def is_tf_expression(x: Any) -> bool: | |
"""Check whether the input is a valid Tensorflow expression, i.e., Tensorflow Tensor, Variable, or Operation.""" | |
return isinstance(x, (tf.Tensor, tf.Variable, tf.Operation)) | |
def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]: | |
"""Convert a Tensorflow shape to a list of ints. Retained for backwards compatibility -- use TensorShape.as_list() in new code.""" | |
return [dim.value for dim in shape] | |
def flatten(x: TfExpressionEx) -> TfExpression: | |
"""Shortcut function for flattening a tensor.""" | |
with tf.name_scope("Flatten"): | |
return tf.reshape(x, [-1]) | |
def log2(x: TfExpressionEx) -> TfExpression: | |
"""Logarithm in base 2.""" | |
with tf.name_scope("Log2"): | |
return tf.log(x) * np.float32(1.0 / np.log(2.0)) | |
def exp2(x: TfExpressionEx) -> TfExpression: | |
"""Exponent in base 2.""" | |
with tf.name_scope("Exp2"): | |
return tf.exp(x * np.float32(np.log(2.0))) | |
def lerp(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpressionEx: | |
"""Linear interpolation.""" | |
with tf.name_scope("Lerp"): | |
return a + (b - a) * t | |
def lerp_clip(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpression: | |
"""Linear interpolation with clip.""" | |
with tf.name_scope("LerpClip"): | |
return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0) | |
def absolute_name_scope(scope: str) -> tf.name_scope: | |
"""Forcefully enter the specified name scope, ignoring any surrounding scopes.""" | |
return tf.name_scope(scope + "/") | |
def absolute_variable_scope(scope: str, **kwargs) -> tf.variable_scope: | |
"""Forcefully enter the specified variable scope, ignoring any surrounding scopes.""" | |
return tf.variable_scope(tf.VariableScope(name=scope, **kwargs), auxiliary_name_scope=False) | |
def _sanitize_tf_config(config_dict: dict = None) -> dict: | |
# Defaults. | |
cfg = dict() | |
cfg["rnd.np_random_seed"] = None # Random seed for NumPy. None = keep as is. | |
cfg["rnd.tf_random_seed"] = "auto" # Random seed for TensorFlow. 'auto' = derive from NumPy random state. None = keep as is. | |
cfg["env.TF_CPP_MIN_LOG_LEVEL"] = "1" # 0 = Print all available debug info from TensorFlow. 1 = Print warnings and errors, but disable debug info. | |
cfg["graph_options.place_pruned_graph"] = True # False = Check that all ops are available on the designated device. True = Skip the check for ops that are not used. | |
cfg["gpu_options.allow_growth"] = True # False = Allocate all GPU memory at the beginning. True = Allocate only as much GPU memory as needed. | |
# Remove defaults for environment variables that are already set. | |
for key in list(cfg): | |
fields = key.split(".") | |
if fields[0] == "env": | |
assert len(fields) == 2 | |
if fields[1] in os.environ: | |
del cfg[key] | |
# User overrides. | |
if config_dict is not None: | |
cfg.update(config_dict) | |
return cfg | |
def init_tf(config_dict: dict = None) -> None: | |
"""Initialize TensorFlow session using good default settings.""" | |
# Skip if already initialized. | |
if tf.get_default_session() is not None: | |
return | |
# Setup config dict and random seeds. | |
cfg = _sanitize_tf_config(config_dict) | |
np_random_seed = cfg["rnd.np_random_seed"] | |
if np_random_seed is not None: | |
np.random.seed(np_random_seed) | |
tf_random_seed = cfg["rnd.tf_random_seed"] | |
if tf_random_seed == "auto": | |
tf_random_seed = np.random.randint(1 << 31) | |
if tf_random_seed is not None: | |
tf.set_random_seed(tf_random_seed) | |
# Setup environment variables. | |
for key, value in cfg.items(): | |
fields = key.split(".") | |
if fields[0] == "env": | |
assert len(fields) == 2 | |
os.environ[fields[1]] = str(value) | |
# Create default TensorFlow session. | |
create_session(cfg, force_as_default=True) | |
def assert_tf_initialized(): | |
"""Check that TensorFlow session has been initialized.""" | |
if tf.get_default_session() is None: | |
raise RuntimeError("No default TensorFlow session found. Please call dnnlib.tflib.init_tf().") | |
def create_session(config_dict: dict = None, force_as_default: bool = False) -> tf.Session: | |
"""Create tf.Session based on config dict.""" | |
# Setup TensorFlow config proto. | |
cfg = _sanitize_tf_config(config_dict) | |
config_proto = tf.ConfigProto() | |
for key, value in cfg.items(): | |
fields = key.split(".") | |
if fields[0] not in ["rnd", "env"]: | |
obj = config_proto | |
for field in fields[:-1]: | |
obj = getattr(obj, field) | |
setattr(obj, fields[-1], value) | |
# Create session. | |
session = tf.Session(config=config_proto) | |
if force_as_default: | |
# pylint: disable=protected-access | |
session._default_session = session.as_default() | |
session._default_session.enforce_nesting = False | |
session._default_session.__enter__() | |
return session | |
def init_uninitialized_vars(target_vars: List[tf.Variable] = None) -> None: | |
"""Initialize all tf.Variables that have not already been initialized. | |
Equivalent to the following, but more efficient and does not bloat the tf graph: | |
tf.variables_initializer(tf.report_uninitialized_variables()).run() | |
""" | |
assert_tf_initialized() | |
if target_vars is None: | |
target_vars = tf.global_variables() | |
test_vars = [] | |
test_ops = [] | |
with tf.control_dependencies(None): # ignore surrounding control_dependencies | |
for var in target_vars: | |
assert is_tf_expression(var) | |
try: | |
tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/IsVariableInitialized:0")) | |
except KeyError: | |
# Op does not exist => variable may be uninitialized. | |
test_vars.append(var) | |
with absolute_name_scope(var.name.split(":")[0]): | |
test_ops.append(tf.is_variable_initialized(var)) | |
init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited] | |
run([var.initializer for var in init_vars]) | |
def set_vars(var_to_value_dict: dict) -> None: | |
"""Set the values of given tf.Variables. | |
Equivalent to the following, but more efficient and does not bloat the tf graph: | |
tflib.run([tf.assign(var, value) for var, value in var_to_value_dict.items()] | |
""" | |
assert_tf_initialized() | |
ops = [] | |
feed_dict = {} | |
for var, value in var_to_value_dict.items(): | |
assert is_tf_expression(var) | |
try: | |
setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/setter:0")) # look for existing op | |
except KeyError: | |
with absolute_name_scope(var.name.split(":")[0]): | |
with tf.control_dependencies(None): # ignore surrounding control_dependencies | |
setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, "new_value"), name="setter") # create new setter | |
ops.append(setter) | |
feed_dict[setter.op.inputs[1]] = value | |
run(ops, feed_dict) | |
def create_var_with_large_initial_value(initial_value: np.ndarray, *args, **kwargs): | |
"""Create tf.Variable with large initial value without bloating the tf graph.""" | |
assert_tf_initialized() | |
assert isinstance(initial_value, np.ndarray) | |
zeros = tf.zeros(initial_value.shape, initial_value.dtype) | |
var = tf.Variable(zeros, *args, **kwargs) | |
set_vars({var: initial_value}) | |
return var | |
def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False): | |
"""Convert a minibatch of images from uint8 to float32 with configurable dynamic range. | |
Can be used as an input transformation for Network.run(). | |
""" | |
images = tf.cast(images, tf.float32) | |
if nhwc_to_nchw: | |
images = tf.transpose(images, [0, 3, 1, 2]) | |
return images * ((drange[1] - drange[0]) / 255) + drange[0] | |
def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False, shrink=1): | |
"""Convert a minibatch of images from float32 to uint8 with configurable dynamic range. | |
Can be used as an output transformation for Network.run(). | |
""" | |
images = tf.cast(images, tf.float32) | |
if shrink > 1: | |
ksize = [1, 1, shrink, shrink] | |
images = tf.nn.avg_pool(images, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") | |
if nchw_to_nhwc: | |
images = tf.transpose(images, [0, 2, 3, 1]) | |
scale = 255 / (drange[1] - drange[0]) | |
images = images * scale + (0.5 - drange[0] * scale) | |
return tf.saturate_cast(images, tf.uint8) | |