Spaces:
Runtime error
Runtime error
File size: 7,930 Bytes
ebd4e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
from . import utils
from .CaptionModel import CaptionModel
class ShowTellModel(CaptionModel):
def __init__(self, opt):
super(ShowTellModel, self).__init__()
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = opt.seq_length
self.fc_feat_size = opt.fc_feat_size
self.ss_prob = 0.0 # Schedule sampling probability
self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size)
self.core = getattr(nn, self.rnn_type.upper())(self.input_encoding_size, self.rnn_size, self.num_layers, bias=False, dropout=self.drop_prob_lm)
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
self.dropout = nn.Dropout(self.drop_prob_lm)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embed.weight.data.uniform_(-initrange, initrange)
self.logit.bias.data.fill_(0)
self.logit.weight.data.uniform_(-initrange, initrange)
def init_hidden(self, bsz):
weight = self.logit.weight
if self.rnn_type == 'lstm':
return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
weight.new_zeros(self.num_layers, bsz, self.rnn_size))
else:
return weight.new_zeros(self.num_layers, bsz, self.rnn_size)
def _forward(self, fc_feats, att_feats, seq, att_masks=None):
batch_size = fc_feats.size(0)
seq_per_img = seq.shape[0] // batch_size
state = self.init_hidden(batch_size*seq_per_img)
outputs = []
if seq_per_img > 1:
fc_feats = utils.repeat_tensors(seq_per_img, fc_feats)
for i in range(seq.size(1) + 1):
if i == 0:
xt = self.img_embed(fc_feats)
else:
if self.training and i >= 2 and self.ss_prob > 0.0: # otherwiste no need to sample
sample_prob = fc_feats.data.new(batch_size*seq_per_img).uniform_(0, 1)
sample_mask = sample_prob < self.ss_prob
if sample_mask.sum() == 0:
it = seq[:, i-1].clone()
else:
sample_ind = sample_mask.nonzero().view(-1)
it = seq[:, i-1].data.clone()
#prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1)
#it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1))
prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1)
it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
else:
it = seq[:, i-1].clone()
# break if all the sequences end
if i >= 2 and seq[:, i-1].data.sum() == 0:
break
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
output = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
outputs.append(output)
return torch.cat([_.unsqueeze(1) for _ in outputs[1:]], 1).contiguous()
def get_logprobs_state(self, it, state):
# 'it' contains a word index
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
return logprobs, state
def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
batch_size = fc_feats.size(0)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = torch.LongTensor(self.seq_length, batch_size).zero_()
seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
state = self.init_hidden(beam_size)
for t in range(2):
if t == 0:
xt = self.img_embed(fc_feats[k:k+1]).expand(beam_size, self.input_encoding_size)
elif t == 1: # input <bos>
it = fc_feats.data.new(beam_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
self.done_beams[k] = self.beam_search(state, logprobs, opt=opt)
seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[:, k] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)
def _sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
return self.sample_beam(fc_feats, att_feats, opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
for t in range(self.seq_length + 2):
if t == 0:
xt = self.img_embed(fc_feats)
else:
if t == 1: # input <bos>
it = fc_feats.data.new(batch_size).long().zero_()
xt = self.embed(it)
output, state = self.core(xt.unsqueeze(0), state)
logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
# sample the next word
if t == self.seq_length + 1: # skip if we achieve maximum length
break
if sample_method == 'greedy':
sampleLogprobs, it = torch.max(logprobs.data, 1)
it = it.view(-1).long()
else:
if temperature == 1.0:
prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1)
else:
# scale logprobs by temperature
prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
it = torch.multinomial(prob_prev, 1).to(logprobs.device)
sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions
it = it.view(-1).long() # and flatten indices for downstream processing
if t >= 1:
# stop when all finished
if t == 1:
unfinished = it > 0
else:
unfinished = unfinished & (it > 0)
it = it * unfinished.type_as(it)
seq[:,t-1] = it #seq[t] the input of t+2 time step
seqLogprobs[:,t-1] = sampleLogprobs.view(-1)
if unfinished.sum() == 0:
break
return seq, seqLogprobs |