Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
|
28 |
-
response = ""
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
|
|
|
|
42 |
"""
|
43 |
-
|
44 |
-
""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain import PromptTemplate, LLMChain
|
2 |
+
from langchain.llms import CTransformers
|
3 |
+
import os
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
8 |
+
from io import BytesIO
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
import gradio as gr
|
|
|
11 |
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
local_llm = "final_model_maybe_gguf-unsloth.Q5_K_M.gguf"
|
14 |
|
15 |
+
config = {
|
16 |
+
'max_new_tokens': 2048,
|
17 |
+
'repetition_penalty': 1.1,
|
18 |
+
'temperature': 0.6,
|
19 |
+
'top_k': 50,
|
20 |
+
'top_p': 0.9,
|
21 |
+
'stream': True,
|
22 |
+
'threads': int(os.cpu_count() / 2)
|
23 |
+
}
|
24 |
|
25 |
+
llm = CTransformers(
|
26 |
+
model=local_llm,
|
27 |
+
model_type="mistral",
|
28 |
+
lib="avx2", #for CPU use
|
29 |
+
**config
|
30 |
+
)
|
31 |
|
32 |
+
print("LLM Initialized...")
|
33 |
|
|
|
34 |
|
35 |
+
prompt_template = """Use the following pieces of information to answer the user's question.
|
36 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
Context: {context}
|
39 |
+
Question: {question}
|
40 |
|
41 |
+
Only return the helpful answer below and nothing else.
|
42 |
+
Helpful answer:
|
43 |
"""
|
44 |
+
|
45 |
+
model_name = "ko-sroberta-multitask"
|
46 |
+
model_kwargs = {'device': 'cpu'}
|
47 |
+
encode_kwargs = {'normalize_embeddings': False}
|
48 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
49 |
+
model_name=model_name,
|
50 |
+
model_kwargs=model_kwargs,
|
51 |
+
encode_kwargs=encode_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
)
|
53 |
|
54 |
|
55 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
|
56 |
+
load_vector_store = Chroma(persist_directory="stores/pet_cosine", embedding_function=embeddings)
|
57 |
+
retriever = load_vector_store.as_retriever(search_kwargs={"k":1})
|
58 |
+
# query = "what is the fastest speed for a greyhound dog?"
|
59 |
+
# semantic_search = retriever.get_relevant_documents(query)
|
60 |
+
# print(semantic_search)
|
61 |
+
|
62 |
+
print("######################################################################")
|
63 |
+
|
64 |
+
chain_type_kwargs = {"prompt": prompt}
|
65 |
+
|
66 |
+
# qa = RetrievalQA.from_chain_type(
|
67 |
+
# llm=llm,
|
68 |
+
# chain_type="stuff",
|
69 |
+
# retriever=retriever,
|
70 |
+
# return_source_documents = True,
|
71 |
+
# chain_type_kwargs= chain_type_kwargs,
|
72 |
+
# verbose=True
|
73 |
+
# )
|
74 |
+
|
75 |
+
# response = qa(query)
|
76 |
+
|
77 |
+
# print(response)
|
78 |
+
|
79 |
+
sample_prompts = ["what is the fastest speed for a greyhound dog?", "Why should we not feed chocolates to the dogs?", "Name two factors which might contribute to why some dogs might get scared?"]
|
80 |
+
|
81 |
+
def get_response(input):
|
82 |
+
query = input
|
83 |
+
chain_type_kwargs = {"prompt": prompt}
|
84 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True)
|
85 |
+
response = qa(query)
|
86 |
+
return response
|
87 |
+
|
88 |
+
input = gr.Text(
|
89 |
+
label="Prompt",
|
90 |
+
show_label=False,
|
91 |
+
max_lines=1,
|
92 |
+
placeholder="Enter your prompt",
|
93 |
+
container=False,
|
94 |
+
)
|
95 |
+
|
96 |
+
iface = gr.Interface(fn=get_response,
|
97 |
+
inputs=input,
|
98 |
+
outputs="text",
|
99 |
+
title="My Dog PetCare Bot",
|
100 |
+
description="This is a RAG implementation based on Zephyr 7B Beta LLM.",
|
101 |
+
examples=sample_prompts,
|
102 |
+
allow_screenshot=False,
|
103 |
+
allow_flagging=False
|
104 |
+
)
|
105 |
+
|
106 |
+
iface.launch()
|