import os import json import gradio as gr from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def get_n_weighted_scores(embeddings, query, n, objective_weight, subjective_weight): query = [model.encode(query)] weighted_scores = [] for key, value in embeddings.items(): objective_embedding = value['objective_embedding'] subjective_embeddings = value['subjective_embeddings'] objective_score = cosine_similarity(query, objective_embedding).item() subjective_scores = cosine_similarity(query, subjective_embeddings) max_score = 0 max_review_index = 0 for idx, score in enumerate(subjective_scores[0].tolist()): weighted_score = ((objective_score * objective_weight)+(score * subjective_weight)) if weighted_score > max_score: max_score = weighted_score max_review_index = idx weighted_scores.append((key, max_score, max_review_index)) return sorted(weighted_scores, key=lambda x: x[1], reverse=True)[:n] def filter_anime(embeddings, genres, themes, rating): genres = set(genres) themes = set(themes) rating = set(rating) filtered_anime = embeddings.copy() for key, anime in embeddings.items(): anime_genres = set(anime['genres']) anime_themes = set(anime['themes']) anime_rating = set([anime['rating']]) if genres.intersection(anime_genres) or 'ALL' in genres: pass else: filtered_anime.pop(key) continue if themes.intersection(anime_themes) or 'ALL' in themes: pass else: filtered_anime.pop(key) continue if rating.intersection(anime_rating) or 'ALL' in rating: pass else: filtered_anime.pop(key) continue return filtered_anime def get_recommendation(query, number_of_recommendations, genres, themes, rating, objective_weight, subjective_weight): filtered_anime = filter_anime(embeddings, genres, themes, rating) results = [] weighted_scores = get_n_weighted_scores(filtered_anime, query, number_of_recommendations, float(objective_weight), float(subjective_weight)) for idx, (key, score, review_index) in enumerate(weighted_scores, start=1): data = embeddings[key] english = data['english'] description = data['description'] review = data['reviews'][review_index]['text'] image = data['image'] results.append(gr.Image(label=f"{english}",value=image, height=435, width=500, visible=True)) results.append(gr.Textbox(label=f"Recommendation {idx}: {english}", value=description, max_lines=7, visible=True)) results.append(gr.Textbox(label=f"Best User Review {idx}'",value=review, max_lines=7, visible=True)) for i in range(3*((15*3)-(3*number_of_recommendations))): results.append("N/A") return results if __name__ == '__main__': with open('./embeddings/data.json') as f: data = json.load(f) embeddings = data['embeddings'] filters = data['filters'] with gr.Blocks() as demo: with gr.Row(): with gr.Column(visible=True) as input_col: query = gr.Textbox(label="What are you looking for?") number_of_recommendations = gr.Slider(label= "# of Recommendations", minimum=1, maximum=10, value=3, step=1) genres = gr.Dropdown(label='Genres',multiselect=True,choices=filters['genres'], value=['ALL']) themes = gr.Dropdown(label='Themes',multiselect=True,choices=filters['themes'], value=['ALL']) rating = gr.Dropdown(label='Rating',multiselect=True,choices=filters['rating'], value=['PG - Children','PG-13 - Teens 13 or older','G - All Ages','R - 17+ (violence & profanity)']) objective_weight = gr.Slider(label= "Objective Weight", minimum=0, maximum=1, value=.7, step=.1) subjective_weight = gr.Slider(label= "Subjective Weight", minimum=0, maximum=1, value=.3, step=.1) submit_btn = gr.Button("Submit") examples = gr.Examples( examples=[ ['A show about pirates with super powers in search of gold', 3, ['Action', 'Adventure', 'Fantasy'], ['ALL'], ['PG-13 - Teens 13 or older'], .8, .2] ], inputs=[query, number_of_recommendations, genres, themes, rating, objective_weight, subjective_weight], ) outputs = [] with gr.Column(): for i in range(15): with gr.Row(): with gr.Column(): outputs.append(gr.Image(f"Image {i}", height=435, width=500, visible=False)) with gr.Column(): outputs.append(gr.Textbox(label=f"Recommendation {i}", max_lines=7, visible=False)) outputs.append(gr.Textbox(label=f"Best User Review", max_lines=7, visible=False)) submit_btn.click( get_recommendation, [query, number_of_recommendations, genres, themes, rating, objective_weight, subjective_weight], outputs ) demo.launch()