import os import json import gradio as gr from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def get_n_weighted_scores(embeddings, query, n, objective_weight, subjective_weight): query = [model.encode(query)] weighted_scores = [] for key, value in embeddings.items(): objective_embedding = value['objective_embedding'] subjective_embeddings = value['subjective_embeddings'] objective_score = cosine_similarity(query, objective_embedding).item() subjective_scores = cosine_similarity(query, subjective_embeddings) max_score = 0 max_review_index = 0 for idx, score in enumerate(subjective_scores[0].tolist()): weighted_score = ((objective_score * objective_weight)+(score * subjective_weight)) if weighted_score > max_score: max_score = weighted_score max_review_index = idx weighted_scores.append((key, max_score, max_review_index)) return sorted(weighted_scores, key=lambda x: x[1], reverse=True)[:n] def filter_anime(embeddings, genres, themes, rating): genres = set(genres) themes = set(themes) rating = set(rating) filtered_anime = embeddings.copy() for key, anime in embeddings.items(): anime_genres = set(anime['genres']) anime_themes = set(anime['themes']) anime_rating = set([anime['rating']]) if genres.intersection(anime_genres) or 'ALL' in genres: pass else: filtered_anime.pop(key) continue if themes.intersection(anime_themes) or 'ALL' in themes: pass else: filtered_anime.pop(key) continue if rating.intersection(anime_rating) or 'ALL' in rating: pass else: filtered_anime.pop(key) continue return filtered_anime def get_recommendation(query, number_of_recommendations, genres, themes, rating, objective_weight, subjective_weight): filtered_anime = filter_anime(embeddings, genres, themes, rating) results = [] weighted_scores = get_n_weighted_scores(filtered_anime, query, number_of_recommendations, float(objective_weight), float(subjective_weight)) for idx, (key, score, review_index) in enumerate(weighted_scores, start=1): data = embeddings[key] if not data['english']: name = data['japanese'] else: name = data['english'] description = data['description'] review = data['reviews'][review_index]['text'] image = data['image'] results.append(gr.Image(label=f"Recommendation {idx}: {name}",value=image, height=435, width=500, visible=True)) results.append(gr.Textbox(label=f"Synopsis", value=description, max_lines=7, visible=True)) results.append(gr.Textbox(label=f"Most Relevant User Review",value=review, max_lines=7, visible=True)) for _ in range(10-number_of_recommendations): results.append(gr.Image(visible=False)) results.append(gr.Textbox(visible=False)) results.append(gr.Textbox(visible=False)) return results if __name__ == '__main__': with open('./embeddings/data.json') as f: data = json.load(f) embeddings = data['embeddings'] filters = data['filters'] with gr.Blocks(theme=gr.themes.Soft(primary_hue='red')) as demo: with gr.Row(): with gr.Column(): gr.Markdown( ''' # Welcome to the Nuanced Recommendation System! ### This system **combines** both objective (synopsis, episode count, themes) and subjective (user reviews) data, in order to recommend the most approprate anime. Feel free to refine using the **optional** filters below! ''' ) with gr.Column(): pass with gr.Row(): with gr.Column() as input_col: query = gr.Textbox(label="What are you looking for?") number_of_recommendations = gr.Slider(label= "# of Recommendations", minimum=1, maximum=10, value=3, step=1) genres = gr.Dropdown(label='Genres',multiselect=True,choices=filters['genres'], value=['ALL']) themes = gr.Dropdown(label='Themes',multiselect=True,choices=filters['themes'], value=['ALL']) rating = gr.Dropdown(label='Rating',multiselect=True,choices=filters['rating'], value=['ALL']) objective_weight = gr.Slider(label= "Objective Weight", minimum=0, maximum=1, value=.5, step=.1) subjective_weight = gr.Slider(label= "Subjective Weight", minimum=0, maximum=1, value=.5, step=.1) submit_btn = gr.Button("Submit") examples = gr.Examples( examples=[ ['A sci-fi anime set in a future where AI and robots have become self-aware', 3, ['Action', 'Sci-Fi', 'Fantasy'], ['ALL'], ['PG-13 - Teens 13 or older'], .8, .2], ['An anime where a group of students form a band, and the story focuses on their personal growth and struggles with adulthood', 5, ['ALL'], ['Music'], ['PG-13 - Teens 13 or older', 'R - 17+ (violence & profanity)'], .3, .7], ['An anime where the main character starts as a villain but slowly redeems themselves', 3, ['Suspense', 'Action'], ['ALL'], ['PG-13 - Teens 13 or older', 'R - 17+ (violence & profanity)'], .2, .8], ], inputs=[query, number_of_recommendations, genres, themes, rating, objective_weight, subjective_weight], ) outputs = [] with gr.Column(): for i in range(10): with gr.Row(): with gr.Column(): outputs.append(gr.Image(height=435, width=500, visible=False)) with gr.Column(): outputs.append(gr.Textbox(max_lines=7, visible=False)) outputs.append(gr.Textbox(max_lines=7, visible=False)) submit_btn.click( get_recommendation, [query, number_of_recommendations, genres, themes, rating, objective_weight, subjective_weight], outputs ) demo.launch()