import os import json from sentence_transformers import SentenceTransformer model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def update_filters(filters, data): for key, value in filters.items(): if data[key] and key == 'rating': value.add(data[key]) else: for val in data[key]: if val: value.add(val) return filters def clean_filters(filters): for key, val in filters.items(): val.add('ALL') filters[key] = list(val) return filters if __name__ == '__main__': filters = { 'genres': set(), 'themes': set(), 'rating': set() } embeddings = {} i=0 for name in os.listdir('./anime'): with open(f"./anime/{name}", 'r') as file: data = json.load(file) if not data: continue i+=1 if i==100: break filters = update_filters(filters, data) name = name.replace('.json', '') data['image'] = f"./images/{name}.jpg" text = f'''Episodes: {data['episodes']} Premiered: {data['premiered']} Broadcast: {data['broadcast']} Producers: {' '.join(data['producers'])} Licensors: {' '.join(data['licensors'])} Studios: {' '.join(data['studios'])} Source: {' '.join(data['source'])} Genres: {' '.join(data['genres'])} Themes: {' '.join(data['themes'])} Demographic: {data['demographic']} Duration: {data['duration']} Rating: {data['rating']} Description: {data['description']}''' embeddings[name] = data.copy() embeddings[name]['objective_embedding'] = [model.encode(text).tolist()] subjective_embeddings = [] for review in embeddings[name]['reviews']: text = review['text'] subjective_embeddings.append(model.encode(text).tolist()) data['review'] = text embeddings[name]['subjective_embeddings'] = subjective_embeddings filters = clean_filters(filters) with open('./embeddings/data.json', 'w') as f: json.dump({'embeddings':embeddings, 'filters': filters}, f) print('Embedding Complete')