mjdolan's picture
Duplicate from Gradio-Blocks/StyleGAN-NADA
07998f9
raw
history blame
377 Bytes
def aggregate_loss_dict(agg_loss_dict):
mean_vals = {}
for output in agg_loss_dict:
for key in output:
mean_vals[key] = mean_vals.setdefault(key, []) + [output[key]]
for key in mean_vals:
if len(mean_vals[key]) > 0:
mean_vals[key] = sum(mean_vals[key]) / len(mean_vals[key])
else:
print('{} has no value'.format(key))
mean_vals[key] = 0
return mean_vals