Spaces:
Running
Running
File size: 17,722 Bytes
2fb0234 a679cf2 36058af 764dce6 a679cf2 36058af a679cf2 36058af a679cf2 764dce6 a679cf2 4e9ddf9 a679cf2 4e9ddf9 a679cf2 4e9ddf9 a679cf2 4e9ddf9 a679cf2 31b5924 764dce6 36058af 31b5924 36058af 764dce6 36058af 764dce6 36058af 764dce6 36058af 764dce6 36058af 01bc423 764dce6 36058af 764dce6 36058af 01bc423 36058af 01bc423 36058af 01bc423 36058af 01bc423 36058af 01bc423 36058af 01bc423 36058af 764dce6 36058af 764dce6 36058af 764dce6 36058af 764dce6 36058af 764dce6 36058af 01bc423 764dce6 01bc423 764dce6 36058af 764dce6 36058af 764dce6 36058af 764dce6 36058af 764dce6 36058af a679cf2 f0128b6 2ad8f23 a679cf2 31b5924 a679cf2 2ad8f23 a679cf2 f0128b6 2ad8f23 a679cf2 e3f95b1 a679cf2 36fdd36 a679cf2 2ad8f23 31b5924 a679cf2 e3f95b1 a679cf2 f0128b6 a679cf2 31b5924 a679cf2 36058af 31b5924 764dce6 a679cf2 01bc423 36058af 764dce6 36058af 764dce6 36058af a679cf2 36058af a679cf2 764dce6 a679cf2 764dce6 a679cf2 31b5924 764dce6 31b5924 764dce6 31b5924 764dce6 31b5924 764dce6 a679cf2 e3f95b1 36058af a679cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
"""Perform inference of one model on a dataset and measure time and energy."""
from __future__ import annotations
import os
import json
import copy
import atexit
from typing import Generator, Literal, Iterable, Dict
from dataclasses import dataclass
import numpy as np
import tyro
import torch
import rich
from rich.table import Table
from fastchat.serve.inference import prepare_logits_processor
from fastchat.model.model_adapter import load_model, get_conversation_template
from torch.utils.data import Dataset, DataLoader
from zeus.monitor import ZeusMonitor
SYSTEM_PROMPTS = {
"chat": (
"A chat between a human user (prompter) and an artificial intelligence (AI) assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
),
"chat-concise": (
"A chat between a human user (prompter) and an artificial intelligence (AI) assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
"The assistant's answers are very concise. "
),
"instruct": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request. "
),
"instruct-concise": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request. "
"The response should be very concise. "
),
}
class CustomDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
sample = self.data[index]
return sample["conversations"][0]["value"]
def dataloader(input_file: str, batch_size: int) -> Generator[tuple[bool, list[str]], None, None]:
"""Yields a tuple of whether this is a warmup run and the input prompt."""
for _ in range(3):
yield True, ["Say something long and random. I don't care about the content." for _ in range (batch_size)]
data = json.load(open(input_file, "r"))
custom_dataset = CustomDataset(data)
data_loader = DataLoader(custom_dataset, batch_size=batch_size, shuffle=False)
for prompt in data_loader:
yield False, prompt
@dataclass
class Output:
response_length: int
input: str
output: str
@torch.inference_mode()
def run_inference(
model,
tokenizer,
params: Dict,
device: str,
context_len: int = 2048,
) ->list[Output]:
# Read parameters
prompts = params["prompt"]
temperature = float(params.get("temperature", 1.0))
repetition_penalty = float(params.get("repetition_penalty", 1.0))
top_p = float(params.get("top_p", 1.0))
top_k = int(params.get("top_k", -1)) # -1 means disable
max_new_tokens = int(params.get("max_new_tokens", 256))
stop_str = params.get("stop", None)
stop_token_ids = list(params.get("stop_token_ids", None) or [])
stop_token_ids.append(tokenizer.eos_token_id)
batch_size = len(prompts)
empty_result = Output(response_length=-1, input="", output="")
result = []
for i, prompt in enumerate(prompts):
result.append(copy.deepcopy(empty_result))
result[i].input = prompt
# left append prompts with eos to make all input prompts the same length
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
logits_processor = prepare_logits_processor(
temperature, repetition_penalty, top_p, top_k
)
prompts_encode = tokenizer(prompts, padding=True)
input_ids = prompts_encode.input_ids
attention_masks = prompts_encode.attention_mask
output_ids = [[] for _ in range(batch_size)]
if model.config.is_encoder_decoder:
max_src_len = context_len
else: # truncate
max_src_len = context_len - max_new_tokens - 1
input_ids = [input_id[-max_src_len:] for input_id in input_ids]
attention_masks = torch.as_tensor([attention_mask[-max_src_len:] for attention_mask in attention_masks], device=device)
if model.config.is_encoder_decoder:
encoder_output = model.encoder(
input_ids=torch.as_tensor(input_ids, device=device),
attention_mask=attention_masks
)[0]
start_ids = torch.as_tensor(
[[model.generation_config.decoder_start_token_id] for _ in range(batch_size)],
dtype=torch.int64,
device=device,
)
past_key_values = out = None
stopped = np.array(batch_size*[False])
# stop string length
stop_str_length = np.zeros(batch_size, dtype=int)
if stop_str and isinstance(stop_str, str):
stop_str_length[:] = len(tokenizer(stop_str).input_ids)
for i in range(max_new_tokens):
if i == 0: # prefill
if model.config.is_encoder_decoder:
out = model.decoder(
input_ids=start_ids,
encoder_hidden_states=encoder_output,
use_cache=True,
)
logits = model.lm_head(out[0])
else:
out = model(torch.as_tensor(input_ids, device=device), use_cache=True, attention_mask=attention_masks)
logits = out.logits
past_key_values = out.past_key_values
else: # decoding
if model.config.is_encoder_decoder:
out = model.decoder(
input_ids=torch.as_tensor(
[[token[0]] for token in tokens], device=device
),
encoder_hidden_states=encoder_output,
use_cache=True,
past_key_values=past_key_values,
)
logits = model.lm_head(out[0])
else:
out = model(
input_ids=torch.as_tensor(
[[token[0]] for token in tokens], device=device
),
use_cache=True,
past_key_values=past_key_values,
attention_mask=attention_masks,
)
logits = out.logits
past_key_values = out.past_key_values
# update attention mask
attention_masks = torch.cat(
[attention_masks, torch.ones((batch_size, 1), device=device)],
dim=1
)
if logits_processor:
if repetition_penalty > 1.0:
tmp_output_ids = torch.as_tensor(output_ids, device=logits.device)
else:
tmp_output_ids = None
last_token_logits = logits_processor(tmp_output_ids, logits[:, -1, :])
else:
last_token_logits = logits[:, -1, :]
# handle unexpected Nan issue for llama 2 7b chat
if torch.any(torch.isnan(last_token_logits)) == True:
return []
if temperature < 1e-5 or top_p < 1e-8: # greedy
_, indices = torch.topk(last_token_logits, 2)
tokens = [[int(token) for token in query] for query in indices.tolist()]
else:
probs = torch.softmax(last_token_logits, dim=-1)
indices = torch.multinomial(probs, num_samples=2)
tokens = [[int(token) for token in query] for query in indices.tolist()]
output_ids = [ids + [token[0]] for ids, token in zip(output_ids, tokens)]
# deal with stop_token_ids
old_stopped = stopped
stopped = np.logical_or(old_stopped, np.array([True if token[0] in stop_token_ids else False for token in tokens]))
different_indices = np.where(stopped != old_stopped)[0]
rfind_start = 0
output = tokenizer.batch_decode(
output_ids,
skip_special_tokens=True,
spaces_between_special_tokens=False,
clean_up_tokenization_spaces=True,
)
output_np = np.array(output)
if different_indices.size > 0:
# here i but not i+1 is because the i+1 token generated is in stop_token_ids
for j in different_indices:
result[j].response_length = i
result[j].output = output[j]
# deal with stop_str
if stop_str:
if isinstance(stop_str, str):
pos_array = np.char.rfind(output_np, stop_str, rfind_start)
find_stop = pos_array != -1
elif isinstance(stop_str, Iterable):
for each_stop in stop_str:
pos_array = np.char.rfind(output_np, each_stop, rfind_start)
find_stop = pos_array != -1
# update stop_str_length with each stop_str_length for each request
stop_str_length[find_stop] = len(tokenizer(each_stop).input_ids)
else:
raise ValueError("Invalid stop field type.")
stop_str_indices = np.where(find_stop & ~stopped)[0]
if stop_str_indices.size > 0:
for j in stop_str_indices:
result[j].response_length = i+1-stop_str_length[j]
result[j].output = output[j][:pos_array[j]]
stopped[find_stop] = True
if all(stopped):
break
not_finish_indices = np.where(stopped == False)[0]
if any(stopped) == False:
output = tokenizer.batch_decode(
output_ids,
skip_special_tokens=True,
spaces_between_special_tokens=False,
clean_up_tokenization_spaces=True,
)
for j in not_finish_indices:
result[j].response_length = max_new_tokens
result[j].output = output[j]
return result
def main(
model_path: str,
input_file: str = "sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled_sorted.json",
output_dir: str = "data",
device_index: int = 0,
task: Literal[tuple(SYSTEM_PROMPTS)] = "chat", # type: ignore
load_8bit: bool = False,
temperature: float = 0.7,
repitition_penalty: float = 1.0,
max_new_tokens: int = 512,
batch_size: int = 1,
) -> None:
"""Run benchmarking for one model on the entire input file.
Args:
model_path: Path to or Huggingface Hub Id of the model.
input_file: Path to the input JSON file. Assumed to be our cleaned ShareGPT data.
(Default: "sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled_sorted.json")
output_dir: Path to the output directory. (Default: "data")
device_index: Index of the GPU to use for inference. (Default: 0)
task: Type of task to perform inference on. (Default: "chat")
load_8bit: Whether to load the model in 8-bit mode. (Default: False)
temperature: Temperature to use for sampling. (Default: 0.7)
repitition_penalty: Repitition penalty to use for the model. (Default: 1.0)
max_new_tokens: Maximum numbers of tokens to generate, ignoring the prompt. (Default: 512)
"""
# NOTE(JW): ChatGLM is implemented as a special case in FastChat inference.
# Also, it's primarily a model that's fine-tuned for Chinese, so it doesn't
# make sense to prompt it in English and talk about its verbosity.
if "chatglm" in model_path.lower():
raise ValueError("ChatGLM is not supported.")
# Get Rich Console instance.
console = rich.get_console()
# Print out what we're about to do.
if model_path.endswith("/"):
model_path = model_path[:-1]
model_name_cleaned = "--".join(model_path.split("/")[-2:])
output_dir = f"{output_dir}/{task}/{model_name_cleaned}"
output_csv_path = f"{output_dir}/benchmark_batch_{batch_size}.json"
config_json_path = f"{output_dir}/config_batch_{batch_size}.json"
table = Table(title="Benchmark")
table.add_column("Configuration")
table.add_column("Value")
table.add_row("Model", f"{model_name_cleaned} (path: {model_path})")
table.add_row("Input", input_file)
table.add_row("Device", f"cuda:{device_index}")
table.add_row("Task", task)
table.add_row("8-bit", str(load_8bit))
table.add_row("Temperature", f"{temperature:.2f}")
table.add_row("Repitition Penalty", f"{repitition_penalty:.2f}")
table.add_row("Max New Tokens", str(max_new_tokens))
table.add_row("Output CSV", output_csv_path)
table.add_row("Config JSON", config_json_path)
console.print(table)
# Set the device.
torch.cuda.set_device(f"cuda:{device_index}")
# Load the model (Huggingface PyTorch) and tokenizer (Huggingface).
model, tokenizer = load_model(
model_path=model_path,
device="cuda",
num_gpus=1,
max_gpu_memory=None,
load_8bit=load_8bit,
cpu_offloading=False,
gptq_config=None,
debug=False,
)
# Chats are accumulated in a conversation helper object.
conv_base = get_conversation_template(model_path)
# Standardize the system prompt for every model.
if "llama-2" in model_path.lower():
conv_base.system = f"<s>[INST] <<SYS>>\n{SYSTEM_PROMPTS[task]}\n<</SYS>>\n\n"
elif "stablelm" in model_path.lower():
conv_base.system = f"""<|SYSTEM|># {SYSTEM_PROMPTS[task]}\n"""
else:
conv_base.system = SYSTEM_PROMPTS[task]
conv_base.messages = []
conv_base.offset = 0
gen_params = {
"model": model_path,
"prompt": "EMPTY",
"temperature": temperature,
"repitition_penalty": repitition_penalty,
"max_new_tokens": max_new_tokens,
"stop": conv_base.stop_str,
"stop_token_ids": conv_base.stop_token_ids,
}
monitor = ZeusMonitor(gpu_indices=[torch.cuda.current_device()])
# Output files.
# Leave only the last two path components and replace slashes with double dashes.
os.makedirs(output_dir, exist_ok=True)
output_json = open(output_csv_path, "w")
output_json.write("[\n")
output_json.flush()
# Conclude the JSON file format with a closing bracket. Using `atexit` will
# handle all cases of the program exiting, including Ctrl-C and errors.
atexit.register(lambda: output_json.write("\n]\n"))
# Dump the configuration to a JSON file.
with open(config_json_path, "w") as config_json:
json.dump(
{
"model_path": model_path,
"input_file": input_file,
"device_index": device_index,
"task": task,
"load_8bit": load_8bit,
"temperature": temperature,
"repitition_penalty": repitition_penalty,
"max_new_tokens": max_new_tokens,
"batch_size": batch_size,
},
config_json,
indent=4,
)
config_json.write("\n")
# Warm up the GPU with some random prompts.
# Forward through all the prompts.
is_first = True
convs = []
prompts = []
data_iter = iter(dataloader(input_file, batch_size))
for is_warmup, input_prompts in data_iter:
# Construct the input prompt.
for i in range(len(input_prompts)):
conv = copy.deepcopy(conv_base)
conv.append_message(conv.roles[0], input_prompts[i])
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
prompts.append(prompt)
convs.append(conv)
gen_params["prompt"] = prompts
# Print input prompt.
for i in range(len(convs)):
console.print(f"\n[u cyan]{'Warmup ' if is_warmup else ''}Prompt[/u cyan](batch_{i}):")
console.print(prompts[i].strip() + "\n", markup=False)
#################################################
# Inference and measurement zone!
#################################################
monitor.begin_window("inference")
results = run_inference(model, tokenizer, gen_params, device="cuda", context_len=2048)
measurements = monitor.end_window("inference")
#################################################
if results:
# Record numbers.
if not is_warmup:
total_num_tokens = sum([result.response_length for result in results]) # total number of tokens
latency = measurements.time # seconds, identical for all requests
throughput = total_num_tokens / latency # tokens per second
energy = measurements.total_energy # Joules, total across all requests
# Fields should be interpreted as per-request
output = {
"model": model_name_cleaned,
"throughput": throughput,
"response_length": total_num_tokens / batch_size,
"latency": latency,
"energy": energy / batch_size,
"input": [prompt.strip() for prompt in prompts],
"output": [result.output.strip() for result in results],
}
output_str = json.dumps(output, indent=4)
if not is_warmup:
if not is_first:
output_json.write(",\n" + output_str)
else:
is_first = False
output_json.write(output_str)
output_json.flush()
# Print the response.
for i in range(len(convs)):
console.print(f"\n[u cyan]{'Warmup ' if is_warmup else ''}Response[/u cyan](batch_{i}):")
console.print(results[i].output.strip() + "\n", markup=False)
# Print measurement.
console.print(measurements)
convs = []
prompts = []
if __name__ == "__main__":
tyro.cli(main)
|