File size: 17,722 Bytes
2fb0234
a679cf2
 
 
 
 
 
 
36058af
764dce6
a679cf2
36058af
a679cf2
 
 
 
36058af
a679cf2
764dce6
a679cf2
 
 
 
 
4e9ddf9
a679cf2
 
 
 
4e9ddf9
a679cf2
 
 
4e9ddf9
a679cf2
 
 
4e9ddf9
 
a679cf2
 
 
31b5924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764dce6
 
 
 
 
36058af
31b5924
36058af
764dce6
36058af
 
 
 
 
764dce6
36058af
 
 
 
 
 
 
 
764dce6
36058af
 
 
764dce6
 
 
 
 
 
36058af
 
 
 
 
 
 
 
01bc423
 
 
 
764dce6
36058af
 
 
 
764dce6
36058af
 
01bc423
36058af
 
 
01bc423
 
36058af
 
 
 
 
 
 
 
 
01bc423
 
 
 
 
 
36058af
 
 
 
 
 
 
 
 
 
01bc423
36058af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01bc423
36058af
 
 
 
01bc423
 
 
 
 
 
36058af
 
 
 
 
 
 
 
 
764dce6
 
 
 
36058af
 
 
 
 
 
 
764dce6
 
36058af
764dce6
36058af
 
764dce6
36058af
764dce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36058af
01bc423
 
764dce6
 
 
 
 
 
01bc423
764dce6
 
36058af
 
 
 
764dce6
36058af
 
764dce6
36058af
 
 
 
 
764dce6
 
 
36058af
764dce6
36058af
a679cf2
 
 
f0128b6
2ad8f23
a679cf2
 
 
 
 
 
31b5924
a679cf2
2ad8f23
a679cf2
 
 
 
f0128b6
2ad8f23
 
 
 
 
 
 
a679cf2
 
 
 
 
 
 
e3f95b1
 
 
a679cf2
36fdd36
 
a679cf2
2ad8f23
31b5924
 
a679cf2
 
 
 
 
 
 
 
 
 
 
 
 
e3f95b1
a679cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0128b6
 
 
 
 
 
a679cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31b5924
a679cf2
 
 
 
 
 
 
 
 
36058af
 
31b5924
764dce6
 
a679cf2
01bc423
36058af
764dce6
36058af
 
 
 
764dce6
36058af
a679cf2
 
36058af
 
 
a679cf2
 
 
 
 
764dce6
a679cf2
 
764dce6
 
a679cf2
31b5924
 
 
 
 
764dce6
 
 
31b5924
764dce6
31b5924
764dce6
31b5924
764dce6
 
 
 
 
 
 
 
 
 
 
 
 
 
a679cf2
 
e3f95b1
36058af
 
 
a679cf2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
"""Perform inference of one model on a dataset and measure time and energy."""

from __future__ import annotations

import os
import json
import copy
import atexit
from typing import Generator, Literal, Iterable, Dict
from dataclasses import dataclass

import numpy as np
import tyro
import torch
import rich
from rich.table import Table
from fastchat.serve.inference import prepare_logits_processor
from fastchat.model.model_adapter import load_model, get_conversation_template
from torch.utils.data import Dataset, DataLoader
from zeus.monitor import ZeusMonitor

SYSTEM_PROMPTS = {
    "chat": (
        "A chat between a human user (prompter) and an artificial intelligence (AI) assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions. "
    ),
    "chat-concise": (
        "A chat between a human user (prompter) and an artificial intelligence (AI) assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions. "
        "The assistant's answers are very concise. "
    ),
    "instruct": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request. "
    ),
    "instruct-concise": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request. "
        "The response should be very concise. "
    ),
}

class CustomDataset(Dataset):
    def __init__(self, data):
        self.data = data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        sample = self.data[index]
        return sample["conversations"][0]["value"]


def dataloader(input_file: str, batch_size: int) -> Generator[tuple[bool, list[str]], None, None]:
    """Yields a tuple of whether this is a warmup run and the input prompt."""
    for _ in range(3):
        yield True, ["Say something long and random. I don't care about the content." for _ in range (batch_size)]
    data = json.load(open(input_file, "r"))
    custom_dataset = CustomDataset(data)
    data_loader = DataLoader(custom_dataset, batch_size=batch_size, shuffle=False)
    for prompt in data_loader:
        yield False, prompt


@dataclass
class Output:
    response_length: int
    input: str
    output: str


@torch.inference_mode()
def run_inference(
    model,
    tokenizer,
    params: Dict,
    device: str,
    context_len: int = 2048,
) ->list[Output]:
    # Read parameters
    prompts = params["prompt"]
    temperature = float(params.get("temperature", 1.0))
    repetition_penalty = float(params.get("repetition_penalty", 1.0))
    top_p = float(params.get("top_p", 1.0))
    top_k = int(params.get("top_k", -1))  # -1 means disable
    max_new_tokens = int(params.get("max_new_tokens", 256))
    stop_str = params.get("stop", None)
    stop_token_ids = list(params.get("stop_token_ids", None) or [])
    stop_token_ids.append(tokenizer.eos_token_id)
    batch_size = len(prompts)

    empty_result = Output(response_length=-1, input="", output="")
    result = []
    for i, prompt in enumerate(prompts):
        result.append(copy.deepcopy(empty_result))
        result[i].input = prompt

    # left append prompts with eos to make all input prompts the same length
    tokenizer.padding_side = "left" 
    tokenizer.pad_token = tokenizer.eos_token

    logits_processor = prepare_logits_processor(
        temperature, repetition_penalty, top_p, top_k
    )

    prompts_encode = tokenizer(prompts, padding=True)
    input_ids = prompts_encode.input_ids
    attention_masks = prompts_encode.attention_mask
    
    output_ids = [[] for _ in range(batch_size)]

    if model.config.is_encoder_decoder:
        max_src_len = context_len
    else:  # truncate
        max_src_len = context_len - max_new_tokens - 1

    input_ids = [input_id[-max_src_len:] for input_id in input_ids]
    attention_masks = torch.as_tensor([attention_mask[-max_src_len:] for attention_mask in attention_masks], device=device)

    if model.config.is_encoder_decoder:
        encoder_output = model.encoder(
            input_ids=torch.as_tensor(input_ids, device=device),
            attention_mask=attention_masks
        )[0]
        start_ids = torch.as_tensor(
            [[model.generation_config.decoder_start_token_id] for _ in range(batch_size)],
            dtype=torch.int64,
            device=device,
        )
    
    past_key_values = out = None
    stopped = np.array(batch_size*[False])

    # stop string length
    stop_str_length = np.zeros(batch_size, dtype=int)
    if stop_str and isinstance(stop_str, str):
        stop_str_length[:] = len(tokenizer(stop_str).input_ids)

    for i in range(max_new_tokens):
        if i == 0:  # prefill
            if model.config.is_encoder_decoder:
                out = model.decoder(
                    input_ids=start_ids,
                    encoder_hidden_states=encoder_output,
                    use_cache=True,
                )
                logits = model.lm_head(out[0])
            else:
                out = model(torch.as_tensor(input_ids, device=device), use_cache=True, attention_mask=attention_masks)
                logits = out.logits
            past_key_values = out.past_key_values
        else:  # decoding
            if model.config.is_encoder_decoder:
                out = model.decoder(
                    input_ids=torch.as_tensor(
                        [[token[0]] for token in tokens], device=device
                    ),
                    encoder_hidden_states=encoder_output,
                    use_cache=True,
                    past_key_values=past_key_values,
                )
                logits = model.lm_head(out[0])
            else:
                out = model(
                    input_ids=torch.as_tensor(
                        [[token[0]] for token in tokens], device=device
                    ),
                    use_cache=True,
                    past_key_values=past_key_values,
                    attention_mask=attention_masks,
                )
                logits = out.logits
            past_key_values = out.past_key_values

        # update attention mask
        attention_masks = torch.cat(
            [attention_masks, torch.ones((batch_size, 1), device=device)],
            dim=1
        )

        if logits_processor:
            if repetition_penalty > 1.0:
                tmp_output_ids = torch.as_tensor(output_ids, device=logits.device)
            else:
                tmp_output_ids = None
            last_token_logits = logits_processor(tmp_output_ids, logits[:, -1, :])
        else:
            last_token_logits = logits[:, -1, :]

        # handle unexpected Nan issue for llama 2 7b chat
        if torch.any(torch.isnan(last_token_logits)) == True:
            return []
        
        if temperature < 1e-5 or top_p < 1e-8:  # greedy
            _, indices = torch.topk(last_token_logits, 2)
            tokens = [[int(token) for token in query] for query in indices.tolist()]
        else:
            probs = torch.softmax(last_token_logits, dim=-1)
            indices = torch.multinomial(probs, num_samples=2)
            tokens = [[int(token) for token in query] for query in indices.tolist()]

        output_ids = [ids + [token[0]] for ids, token in zip(output_ids, tokens)]
        
        # deal with stop_token_ids
        old_stopped = stopped
        stopped = np.logical_or(old_stopped, np.array([True if token[0] in stop_token_ids else False for token in tokens]))
        different_indices = np.where(stopped != old_stopped)[0]

        rfind_start = 0
        output = tokenizer.batch_decode(
            output_ids,
            skip_special_tokens=True,
            spaces_between_special_tokens=False,
            clean_up_tokenization_spaces=True,
        )
        output_np = np.array(output)

        if different_indices.size > 0:
        # here i but not i+1 is because the i+1 token generated is in stop_token_ids
            for j in different_indices:
                result[j].response_length = i
                result[j].output = output[j]

        # deal with stop_str
        if stop_str:
            if isinstance(stop_str, str):
                pos_array = np.char.rfind(output_np, stop_str, rfind_start)
                find_stop = pos_array != -1
            elif isinstance(stop_str, Iterable):
                for each_stop in stop_str:
                    pos_array = np.char.rfind(output_np, each_stop, rfind_start)
                    find_stop = pos_array != -1
                    # update stop_str_length with each stop_str_length for each request
                    stop_str_length[find_stop] = len(tokenizer(each_stop).input_ids)
            else:
                raise ValueError("Invalid stop field type.")

            stop_str_indices = np.where(find_stop & ~stopped)[0]
            if stop_str_indices.size > 0:
                for j in stop_str_indices:
                    result[j].response_length = i+1-stop_str_length[j]
                    result[j].output = output[j][:pos_array[j]]
                stopped[find_stop] = True

        if all(stopped):
            break

    not_finish_indices = np.where(stopped == False)[0]
    if any(stopped) == False:
        output = tokenizer.batch_decode(
            output_ids,
            skip_special_tokens=True,
            spaces_between_special_tokens=False,
            clean_up_tokenization_spaces=True,
        )

        for j in not_finish_indices:
            result[j].response_length = max_new_tokens
            result[j].output = output[j]

    return result


def main(
    model_path: str,
    input_file: str = "sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled_sorted.json",
    output_dir: str = "data",
    device_index: int = 0,
    task: Literal[tuple(SYSTEM_PROMPTS)] = "chat",  # type: ignore
    load_8bit: bool = False,
    temperature: float = 0.7,
    repitition_penalty: float = 1.0,
    max_new_tokens: int = 512,
    batch_size: int = 1,
) -> None:
    """Run benchmarking for one model on the entire input file.

    Args:
        model_path: Path to or Huggingface Hub Id of the model.
        input_file: Path to the input JSON file. Assumed to be our cleaned ShareGPT data.
            (Default: "sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled_sorted.json")
        output_dir: Path to the output directory. (Default: "data")
        device_index: Index of the GPU to use for inference. (Default: 0)
        task: Type of task to perform inference on. (Default: "chat")
        load_8bit: Whether to load the model in 8-bit mode. (Default: False)
        temperature: Temperature to use for sampling. (Default: 0.7)
        repitition_penalty: Repitition penalty to use for the model. (Default: 1.0)
        max_new_tokens: Maximum numbers of tokens to generate, ignoring the prompt. (Default: 512)
    """
    # NOTE(JW): ChatGLM is implemented as a special case in FastChat inference.
    # Also, it's primarily a model that's fine-tuned for Chinese, so it doesn't
    # make sense to prompt it in English and talk about its verbosity.
    if "chatglm" in model_path.lower():
        raise ValueError("ChatGLM is not supported.")

    # Get Rich Console instance.
    console = rich.get_console()

    # Print out what we're about to do.
    if model_path.endswith("/"):
        model_path = model_path[:-1]
    model_name_cleaned = "--".join(model_path.split("/")[-2:])
    output_dir = f"{output_dir}/{task}/{model_name_cleaned}"
    output_csv_path = f"{output_dir}/benchmark_batch_{batch_size}.json"
    config_json_path = f"{output_dir}/config_batch_{batch_size}.json"
    table = Table(title="Benchmark")
    table.add_column("Configuration")
    table.add_column("Value")
    table.add_row("Model", f"{model_name_cleaned} (path: {model_path})")
    table.add_row("Input", input_file)
    table.add_row("Device", f"cuda:{device_index}")
    table.add_row("Task", task)
    table.add_row("8-bit", str(load_8bit))
    table.add_row("Temperature", f"{temperature:.2f}")
    table.add_row("Repitition Penalty", f"{repitition_penalty:.2f}")
    table.add_row("Max New Tokens", str(max_new_tokens))
    table.add_row("Output CSV", output_csv_path)
    table.add_row("Config JSON", config_json_path)
    console.print(table)

    # Set the device.
    torch.cuda.set_device(f"cuda:{device_index}")

    # Load the model (Huggingface PyTorch) and tokenizer (Huggingface).
    model, tokenizer = load_model(
        model_path=model_path,
        device="cuda",
        num_gpus=1,
        max_gpu_memory=None,
        load_8bit=load_8bit,
        cpu_offloading=False,
        gptq_config=None,
        debug=False,
    )

    # Chats are accumulated in a conversation helper object.
    conv_base = get_conversation_template(model_path)

    # Standardize the system prompt for every model.
    if "llama-2" in model_path.lower():
        conv_base.system = f"<s>[INST] <<SYS>>\n{SYSTEM_PROMPTS[task]}\n<</SYS>>\n\n"
    elif "stablelm" in model_path.lower():
        conv_base.system = f"""<|SYSTEM|># {SYSTEM_PROMPTS[task]}\n"""
    else:
        conv_base.system = SYSTEM_PROMPTS[task]
    conv_base.messages = []
    conv_base.offset = 0

    gen_params = {
        "model": model_path,
        "prompt": "EMPTY",
        "temperature": temperature,
        "repitition_penalty": repitition_penalty,
        "max_new_tokens": max_new_tokens,
        "stop": conv_base.stop_str,
        "stop_token_ids": conv_base.stop_token_ids,
    }

    monitor = ZeusMonitor(gpu_indices=[torch.cuda.current_device()])

    # Output files.
    # Leave only the last two path components and replace slashes with double dashes.
    os.makedirs(output_dir, exist_ok=True)
    output_json = open(output_csv_path, "w")
    output_json.write("[\n")
    output_json.flush()
    # Conclude the JSON file format with a closing bracket. Using `atexit` will
    # handle all cases of the program exiting, including Ctrl-C and errors.
    atexit.register(lambda: output_json.write("\n]\n"))

    # Dump the configuration to a JSON file.
    with open(config_json_path, "w") as config_json:
        json.dump(
            {
                "model_path": model_path,
                "input_file": input_file,
                "device_index": device_index,
                "task": task,
                "load_8bit": load_8bit,
                "temperature": temperature,
                "repitition_penalty": repitition_penalty,
                "max_new_tokens": max_new_tokens,
                "batch_size": batch_size,
            },
            config_json,
            indent=4,
        )
        config_json.write("\n")

    # Warm up the GPU with some random prompts.
    # Forward through all the prompts.
    is_first = True
    convs = []
    prompts = []
    data_iter = iter(dataloader(input_file, batch_size))
    
    for is_warmup, input_prompts in data_iter:
        # Construct the input prompt.
        for i in range(len(input_prompts)):
            conv = copy.deepcopy(conv_base)
            conv.append_message(conv.roles[0], input_prompts[i])
            conv.append_message(conv.roles[1], "")
            prompt = conv.get_prompt()
            prompts.append(prompt)
            convs.append(conv)

        gen_params["prompt"] = prompts

        # Print input prompt.
        for i in range(len(convs)):
            console.print(f"\n[u cyan]{'Warmup ' if is_warmup else ''}Prompt[/u cyan](batch_{i}):")
            console.print(prompts[i].strip() + "\n", markup=False)

        #################################################
        # Inference and measurement zone!
        #################################################
        monitor.begin_window("inference")
        results = run_inference(model, tokenizer, gen_params, device="cuda", context_len=2048)
        measurements = monitor.end_window("inference")
        #################################################
        if results:
            # Record numbers.
            if not is_warmup:
                total_num_tokens = sum([result.response_length for result in results])  # total number of tokens
                latency = measurements.time  # seconds, identical for all requests
                throughput = total_num_tokens / latency  # tokens per second
                energy = measurements.total_energy  # Joules, total across all requests
                # Fields should be interpreted as per-request
                output = {
                    "model": model_name_cleaned,
                    "throughput": throughput,
                    "response_length": total_num_tokens / batch_size,
                    "latency": latency,
                    "energy": energy / batch_size,
                    "input": [prompt.strip() for prompt in prompts],
                    "output": [result.output.strip() for result in results],
                }
                output_str = json.dumps(output, indent=4)
                if not is_warmup:
                    if not is_first:
                        output_json.write(",\n" + output_str)
                    else:
                        is_first = False
                        output_json.write(output_str)
                output_json.flush()

            # Print the response.
            for i in range(len(convs)):
                console.print(f"\n[u cyan]{'Warmup ' if is_warmup else ''}Response[/u cyan](batch_{i}):")
                console.print(results[i].output.strip() + "\n", markup=False)

        # Print measurement.
        console.print(measurements)
        convs = []
        prompts = []

if __name__ == "__main__":
    tyro.cli(main)