Spaces:
Running
Running
Jae-Won Chung
commited on
Commit
•
360f81c
1
Parent(s):
4e9ddf9
Merge master and web
Browse files- .github/workflows/push_spaces.yaml +35 -0
- Dockerfile +1 -1
- LEADERBOARD.md +68 -0
- README.md +10 -0
- app.py +360 -0
- data/2023-06-17/A40_chat-concise_benchmark.csv +21 -0
- data/2023-06-17/A40_chat_benchmark.csv +21 -0
- data/2023-06-17/A40_instruct-concise_benchmark.csv +21 -0
- data/2023-06-17/A40_instruct_benchmark.csv +21 -0
- data/2023-06-17/models.json +102 -0
- data/2023-06-17/schema.yaml +2 -0
- data/2023-06-17/score.csv +21 -0
- index.html +12 -0
- requirements-benchmark.txt +5 -0
- requirements.txt +2 -5
.github/workflows/push_spaces.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Deploy
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- master
|
7 |
+
paths:
|
8 |
+
- 'data/**'
|
9 |
+
- 'app.py'
|
10 |
+
- 'LEADERBOARD.md'
|
11 |
+
- 'README.md'
|
12 |
+
- 'requirements.txt'
|
13 |
+
|
14 |
+
concurrency:
|
15 |
+
group: ${{ github.ref }}-hfdeploy
|
16 |
+
cancel-in-progress: true
|
17 |
+
|
18 |
+
jobs:
|
19 |
+
push:
|
20 |
+
runs-on: ubuntu-latest
|
21 |
+
if: github.event.repository.fork == false
|
22 |
+
steps:
|
23 |
+
- name: Checkout repository
|
24 |
+
uses: actions/checkout@v3
|
25 |
+
with:
|
26 |
+
fetch-depth: 0
|
27 |
+
lfs: true
|
28 |
+
ref: master
|
29 |
+
- name: Push to Space
|
30 |
+
env:
|
31 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
32 |
+
run: |
|
33 |
+
for i in 1 2 3 4 5; do
|
34 |
+
git push -f https://jaywonchung:$HF_TOKEN@huggingface.co/spaces/symbioticlab/ml-energy-leaderboard master:main && break || sleep 5;
|
35 |
+
done
|
Dockerfile
CHANGED
@@ -32,7 +32,7 @@ RUN git clone https://github.com/SymbioticLab/Zeus.git zeus \
|
|
32 |
# Install requirements for benchmarking
|
33 |
ADD . /workspace/leaderboard
|
34 |
RUN cd leaderboard \
|
35 |
-
&& pip install -r requirements.txt \
|
36 |
&& cd ..
|
37 |
|
38 |
ENV TRANSFORMERS_CACHE=/data/leaderboard/hfcache
|
|
|
32 |
# Install requirements for benchmarking
|
33 |
ADD . /workspace/leaderboard
|
34 |
RUN cd leaderboard \
|
35 |
+
&& pip install -r requirements-benchmark.txt \
|
36 |
&& cd ..
|
37 |
|
38 |
ENV TRANSFORMERS_CACHE=/data/leaderboard/hfcache
|
LEADERBOARD.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The goal of the ML.ENERGY Leaderboard is to give people a sense of how much **energy** LLMs would consume.
|
2 |
+
|
3 |
+
## How is energy different?
|
4 |
+
|
5 |
+
Even between models with the exact same architecture and size, the average energy consumption per prompt is different because they have **different verbosity**.
|
6 |
+
That is, when asked the same thing, they answer in different lengths.
|
7 |
+
|
8 |
+
## Metrics
|
9 |
+
|
10 |
+
- `gpu`: NVIDIA GPU model name
|
11 |
+
- `task`: Name of the task. See *Tasks* below for details.
|
12 |
+
- `throughput` (token/s): The average number of tokens generated per second.
|
13 |
+
- `response_length` (token): The average number of tokens in the model's response.
|
14 |
+
- `latency` (s): The average time it took for the model to generate a response.
|
15 |
+
- `energy` (J): The average energy consumed by the model to generate a response.
|
16 |
+
|
17 |
+
## Tasks
|
18 |
+
|
19 |
+
For each task, every model uses the same system prompt. We still account for differences in roles, e.g. `USER`, `HUMAN`, `ASSISTANT`, `GPT`.
|
20 |
+
|
21 |
+
| Name | System prompt |
|
22 |
+
|--|--|
|
23 |
+
| chat | A chat between a human user (prompter) and an artificial intelligence (AI) assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. |
|
24 |
+
| chat-concise | A chat between a human user (prompter) and an artificial intelligence (AI) assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. The assistant's answers are very concise. |
|
25 |
+
| instruct | Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
26 |
+
| instruct-concise | Below is an instruction that describes a task. Write a response that appropriately completes the request. The response should be very concise. |
|
27 |
+
|
28 |
+
## Setup
|
29 |
+
|
30 |
+
Find our benchmark script for one model [here](https://github.com/ml-energy/leaderboard/blob/master/benchmark.py).
|
31 |
+
|
32 |
+
### Software
|
33 |
+
|
34 |
+
- PyTorch 2.0.1
|
35 |
+
- [FastChat](https://github.com/lm-sys/fastchat) -- For various model support
|
36 |
+
- [Zeus](https://ml.energy/zeus) -- For GPU energy measurement
|
37 |
+
|
38 |
+
### Hardware
|
39 |
+
|
40 |
+
- NVIDIA A40 GPU
|
41 |
+
|
42 |
+
### Parameters
|
43 |
+
|
44 |
+
- Model
|
45 |
+
- Batch size 1
|
46 |
+
- FP16
|
47 |
+
- Sampling (decoding)
|
48 |
+
- Greedy sampling from multinomial distribution
|
49 |
+
- Temperature 0.7
|
50 |
+
- Repetition penalty 1.0
|
51 |
+
|
52 |
+
## Data
|
53 |
+
|
54 |
+
We randomly sampled around 3000 prompts from the [cleaned ShareGPT dataset](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered).
|
55 |
+
See [here](https://github.com/ml-energy/leaderboard/tree/master/sharegpt) for more detail on how we created the benchmark dataset.
|
56 |
+
|
57 |
+
We used identical system prompts for all models (while respecting their own *role* tokens):
|
58 |
+
```
|
59 |
+
A chat between a human user (prompter) and an artificial intelligence (AI) assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
|
60 |
+
```
|
61 |
+
|
62 |
+
## Upcoming
|
63 |
+
|
64 |
+
- Compare against more optimized inference runtimes, like TensorRT.
|
65 |
+
- Other GPUs
|
66 |
+
- Other model/sampling parameters
|
67 |
+
- More models
|
68 |
+
- Model quality evaluation numbers (e.g., AI2 Reasoning Challenge, HellaSwag)
|
README.md
CHANGED
@@ -1,3 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# ML.ENERGY Leaderboard
|
2 |
|
3 |
[![Leaderboard](https://custom-icon-badges.herokuapp.com/badge/ML.ENERGY-Leaderboard-blue.svg?logo=ml-energy)](https://ml.energy/leaderboard)
|
|
|
1 |
+
---
|
2 |
+
title: "ML.ENERGY Leaderboard"
|
3 |
+
python_version: "3.9"
|
4 |
+
app_file: "app.py"
|
5 |
+
sdk: "gradio"
|
6 |
+
sdk_version: "3.35.2"
|
7 |
+
pinned: true
|
8 |
+
tags: ["energy", "leaderboard"]
|
9 |
+
---
|
10 |
+
|
11 |
# ML.ENERGY Leaderboard
|
12 |
|
13 |
[![Leaderboard](https://custom-icon-badges.herokuapp.com/badge/ML.ENERGY-Leaderboard-blue.svg?logo=ml-energy)](https://ml.energy/leaderboard)
|
app.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import yaml
|
6 |
+
import itertools
|
7 |
+
import contextlib
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import gradio as gr
|
11 |
+
import pandas as pd
|
12 |
+
import plotly.io as pio
|
13 |
+
import plotly.express as px
|
14 |
+
pio.templates.default = "plotly_white"
|
15 |
+
|
16 |
+
|
17 |
+
class TableManager:
|
18 |
+
def __init__(self, data_dir: str) -> None:
|
19 |
+
"""Load leaderboard data from CSV files in data_dir."""
|
20 |
+
# Load and merge CSV files.
|
21 |
+
df = self._read_tables(data_dir)
|
22 |
+
models = json.load(open(f"{data_dir}/models.json"))
|
23 |
+
|
24 |
+
# Add the #params column.
|
25 |
+
df["parameters"] = df["model"].apply(lambda x: models[x]["params"])
|
26 |
+
|
27 |
+
# Make the first column (model) an HTML anchor to the model's website.
|
28 |
+
def format_model_link(model_name: str) -> str:
|
29 |
+
url = models[model_name]["url"]
|
30 |
+
nickname = models[model_name]["nickname"]
|
31 |
+
return (
|
32 |
+
f'<a style="text-decoration: underline; text-decoration-style: dotted" '
|
33 |
+
f'target="_blank" href="{url}">{nickname}</a>'
|
34 |
+
)
|
35 |
+
df["model"] = df["model"].apply(format_model_link)
|
36 |
+
|
37 |
+
# Sort by energy.
|
38 |
+
df = df.sort_values(by="energy", ascending=True)
|
39 |
+
|
40 |
+
# The full table where all the data are.
|
41 |
+
self.full_df = df
|
42 |
+
# The currently visible table after filtering.
|
43 |
+
self.cur_df = df
|
44 |
+
# The current index of the visible table after filtering.
|
45 |
+
self.cur_index = df.index.to_numpy()
|
46 |
+
|
47 |
+
def _read_tables(self, data_dir: str) -> pd.DataFrame:
|
48 |
+
"""Read tables."""
|
49 |
+
df_score = pd.read_csv(f"{data_dir}/score.csv")
|
50 |
+
|
51 |
+
with open(f"{data_dir}/schema.yaml") as file:
|
52 |
+
self.schema: dict[str, list] = yaml.safe_load(file)
|
53 |
+
|
54 |
+
res_df = pd.DataFrame()
|
55 |
+
|
56 |
+
# Do a cartesian product of all the choices in the schema
|
57 |
+
# and try to read the corresponding CSV files.
|
58 |
+
for choice in itertools.product(*self.schema.values()):
|
59 |
+
filepath = f"{data_dir}/{'_'.join(choice)}_benchmark.csv"
|
60 |
+
with contextlib.suppress(FileNotFoundError):
|
61 |
+
df = pd.read_csv(filepath)
|
62 |
+
for key, val in zip(self.schema.keys(), choice):
|
63 |
+
df.insert(1, key, val)
|
64 |
+
res_df = pd.concat([res_df, df])
|
65 |
+
|
66 |
+
if res_df.empty:
|
67 |
+
raise ValueError(f"No benchmark CSV files were read from {data_dir=}.")
|
68 |
+
|
69 |
+
return pd.merge(res_df, df_score, on=["model"]).round(2)
|
70 |
+
|
71 |
+
def _format_msg(self, text: str) -> str:
|
72 |
+
"""Formats into HTML that prints in Monospace font."""
|
73 |
+
return f"<pre style='font-family: monospace'>{text}</pre>"
|
74 |
+
|
75 |
+
def add_column(self, column_name: str, formula: str):
|
76 |
+
"""Create and add a new column with the given formula."""
|
77 |
+
# If the user did not provide the name of the new column,
|
78 |
+
# generate a unique name for them.
|
79 |
+
if not column_name:
|
80 |
+
counter = 1
|
81 |
+
while (column_name := f"custom{counter}") in self.full_df.columns:
|
82 |
+
counter += 1
|
83 |
+
|
84 |
+
# If the user did not provide a formula, return an error message.
|
85 |
+
if not formula:
|
86 |
+
return self.cur_df, self._format_msg("Please enter a formula.")
|
87 |
+
|
88 |
+
# If there is an equal sign in the formula, `df.eval` will
|
89 |
+
# return an entire DataFrame with the new column, instead of
|
90 |
+
# just the new column. This is not what we want, so we check
|
91 |
+
# for this case and return an error message.
|
92 |
+
if "=" in formula:
|
93 |
+
return self.cur_df, self._format_msg("Invalid formula: expr cannot contain '='.")
|
94 |
+
|
95 |
+
# The user may want to update an existing column.
|
96 |
+
verb = "Updated" if column_name in self.full_df.columns else "Added"
|
97 |
+
|
98 |
+
# Evaluate the formula and catch any error.
|
99 |
+
try:
|
100 |
+
col = self.full_df.eval(formula)
|
101 |
+
if isinstance(col, pd.Series):
|
102 |
+
col = col.round(2)
|
103 |
+
self.full_df[column_name] = col
|
104 |
+
except Exception as exc:
|
105 |
+
return self.cur_df, self._format_msg(f"Invalid formula: {exc}")
|
106 |
+
|
107 |
+
# If adding a column succeeded, `self.cur_df` should also be updated.
|
108 |
+
self.cur_df = self.full_df.loc[self.cur_index]
|
109 |
+
return self.cur_df, self._format_msg(f"{verb} column '{column_name}'.")
|
110 |
+
|
111 |
+
def get_dropdown(self):
|
112 |
+
columns = self.full_df.columns.tolist()[1:] # include gpu and task in the dropdown
|
113 |
+
return [
|
114 |
+
gr.Dropdown(choices=columns, label="X"),
|
115 |
+
gr.Dropdown(choices=columns, label="Y"),
|
116 |
+
gr.Dropdown(choices=columns, label="Z (optional)"),
|
117 |
+
]
|
118 |
+
|
119 |
+
def update_dropdown(self):
|
120 |
+
columns = self.full_df.columns.tolist()[1:]
|
121 |
+
dropdown_update = gr.Dropdown.update(choices=columns)
|
122 |
+
return [dropdown_update] * 3
|
123 |
+
|
124 |
+
def set_filter_get_df(self, *filters):
|
125 |
+
"""Set the current set of filters and return the filtered DataFrame."""
|
126 |
+
index = np.full(len(self.full_df), True)
|
127 |
+
for setup, choice in zip(self.schema, filters):
|
128 |
+
index = index & self.full_df[setup].isin(choice)
|
129 |
+
self.cur_df = self.full_df.loc[index]
|
130 |
+
self.cur_index = index
|
131 |
+
return self.cur_df
|
132 |
+
|
133 |
+
def plot_scatter(self, width, height, x, y, z):
|
134 |
+
# The user did not select either x or y.
|
135 |
+
if not x or not y:
|
136 |
+
return None, width, height, self._format_msg("Please select both X and Y.")
|
137 |
+
|
138 |
+
# Width and height may be an empty string. Then we set them to 600.
|
139 |
+
if not width and not height:
|
140 |
+
width, height = "600", "600"
|
141 |
+
elif not width:
|
142 |
+
width = height
|
143 |
+
elif not height:
|
144 |
+
height = width
|
145 |
+
try:
|
146 |
+
width, height = int(width), int(height)
|
147 |
+
except ValueError:
|
148 |
+
return None, width, height, self._format_msg("Width and height should be positive integers.")
|
149 |
+
|
150 |
+
# Strip the <a> tag from model names.
|
151 |
+
text = self.cur_df["model"].apply(lambda x: x.split(">")[1].split("<")[0])
|
152 |
+
if z is None or z == "None" or z == "":
|
153 |
+
fig = px.scatter(self.cur_df, x=x, y=y, text=text)
|
154 |
+
else:
|
155 |
+
fig = px.scatter_3d(self.cur_df, x=x, y=y, z=z, text=text)
|
156 |
+
fig.update_traces(textposition="top center")
|
157 |
+
fig.update_layout(width=width, height=height)
|
158 |
+
|
159 |
+
return fig, width, height, ""
|
160 |
+
|
161 |
+
|
162 |
+
# Find the latest version of the CSV files in data/
|
163 |
+
# and initialize the global TableManager.
|
164 |
+
latest_date = sorted(os.listdir("data/"))[-1]
|
165 |
+
|
166 |
+
# The global instance of the TableManager should only be used when
|
167 |
+
# initializing components in the Gradio interface. If the global instance
|
168 |
+
# is mutated while handling user sessions, the change will be reflected
|
169 |
+
# in every user session. Instead, the instance provided by gr.State should
|
170 |
+
# be used.
|
171 |
+
global_tbm = TableManager(f"data/{latest_date}")
|
172 |
+
|
173 |
+
# Custom JS.
|
174 |
+
# XXX: This is a hack to make the model names clickable.
|
175 |
+
# Ideally, we should set `datatype` in the constructor of `gr.DataFrame` to
|
176 |
+
# `["markdown"] + ["number"] * (len(df.columns) - 1)` and format models names
|
177 |
+
# as an HTML <a> tag. However, because we also want to dynamically add new
|
178 |
+
# columns to the table and Gradio < 4.0 does not support updating `datatype` with
|
179 |
+
# `gr.DataFrame.update` yet, we need to manually walk into the DOM and replace
|
180 |
+
# the innerHTML of the model name cells with dynamically interpreted HTML.
|
181 |
+
# Desired feature tracked at https://github.com/gradio-app/gradio/issues/3732
|
182 |
+
dataframe_update_js = f"""
|
183 |
+
function format_model_link() {{
|
184 |
+
// Iterate over the cells of the first column of the leaderboard table.
|
185 |
+
for (let index = 1; index <= {len(global_tbm.full_df)}; index++) {{
|
186 |
+
// Get the cell.
|
187 |
+
var cell = document.querySelector(
|
188 |
+
`#tab-leaderboard > div > div > div > table > tbody > tr:nth-child(${{index}}) > td:nth-child(1) > div > span`
|
189 |
+
);
|
190 |
+
|
191 |
+
// If nothing was found, it likely means that now the visible table has less rows
|
192 |
+
// than the full table. This happens when the user filters the table. In this case,
|
193 |
+
// we should just return.
|
194 |
+
if (cell == null) break;
|
195 |
+
|
196 |
+
// This check exists to make this function idempotent.
|
197 |
+
// Multiple changes to the Dataframe component may invoke this function,
|
198 |
+
// multiple times to the same HTML table (e.g., adding and sorting cols).
|
199 |
+
// Thus, we check whether we already formatted the model names by seeing
|
200 |
+
// whether the child of the cell is a text node. If it is not,
|
201 |
+
// it means we already parsed it into HTML, so we should just return.
|
202 |
+
if (cell.firstChild.nodeType != 3) break;
|
203 |
+
|
204 |
+
// Decode and interpret the innerHTML of the cell as HTML.
|
205 |
+
var decoded_string = new DOMParser().parseFromString(cell.innerHTML, "text/html").documentElement.textContent;
|
206 |
+
var temp = document.createElement("template");
|
207 |
+
temp.innerHTML = decoded_string;
|
208 |
+
var model_anchor = temp.content.firstChild;
|
209 |
+
|
210 |
+
// Replace the innerHTML of the cell with the interpreted HTML.
|
211 |
+
cell.replaceChildren(model_anchor);
|
212 |
+
}}
|
213 |
+
|
214 |
+
// Return all arguments as is.
|
215 |
+
return arguments
|
216 |
+
}}
|
217 |
+
"""
|
218 |
+
|
219 |
+
# Custom CSS.
|
220 |
+
css = """
|
221 |
+
/* Make ML.ENERGY look like a clickable logo. */
|
222 |
+
.text-logo {
|
223 |
+
color: #27cb63 !important;
|
224 |
+
text-decoration: none !important;
|
225 |
+
}
|
226 |
+
|
227 |
+
/* Make the submit button the same color as the logo. */
|
228 |
+
.btn-submit {
|
229 |
+
background: #27cb63 !important;
|
230 |
+
color: white !important;
|
231 |
+
border: 0 !important;
|
232 |
+
}
|
233 |
+
|
234 |
+
/* Center the plotly plot inside its container. */
|
235 |
+
.plotly > div {
|
236 |
+
margin: auto !important;
|
237 |
+
}
|
238 |
+
|
239 |
+
/* Limit the width of the first column to 300 px. */
|
240 |
+
table td:first-child,
|
241 |
+
table th:first-child {
|
242 |
+
max-width: 300px;
|
243 |
+
overflow: auto;
|
244 |
+
white-space: nowrap;
|
245 |
+
}
|
246 |
+
"""
|
247 |
+
|
248 |
+
block = gr.Blocks(css=css)
|
249 |
+
with block:
|
250 |
+
tbm = gr.State(global_tbm) # type: ignore
|
251 |
+
gr.HTML("<h1><a href='https://ml.energy' class='text-logo'>ML.ENERGY</a> Leaderboard</h1>")
|
252 |
+
|
253 |
+
with gr.Tabs():
|
254 |
+
# Tab 1: Leaderboard.
|
255 |
+
with gr.TabItem("Leaderboard"):
|
256 |
+
with gr.Row():
|
257 |
+
with gr.Box():
|
258 |
+
gr.Markdown("## Select benchmark parameters")
|
259 |
+
checkboxes = []
|
260 |
+
for key, choices in global_tbm.schema.items():
|
261 |
+
# Specifying `value` makes everything checked by default.
|
262 |
+
checkboxes.append(gr.CheckboxGroup(choices=choices, value=choices, label=key))
|
263 |
+
|
264 |
+
# Block 1: Leaderboard table.
|
265 |
+
with gr.Row():
|
266 |
+
dataframe = gr.Dataframe(type="pandas", elem_id="tab-leaderboard")
|
267 |
+
# Make sure the models have clickable links.
|
268 |
+
dataframe.change(None, None, None, _js=dataframe_update_js)
|
269 |
+
# Table automatically updates when users check or uncheck any checkbox.
|
270 |
+
for checkbox in checkboxes:
|
271 |
+
checkbox.change(TableManager.set_filter_get_df, inputs=[tbm, *checkboxes], outputs=dataframe)
|
272 |
+
|
273 |
+
# Block 2: Allow users to add new columns.
|
274 |
+
with gr.Row():
|
275 |
+
with gr.Column(scale=3):
|
276 |
+
with gr.Row():
|
277 |
+
colname_input = gr.Textbox("power", lines=1, label="Custom column name")
|
278 |
+
formula_input = gr.Textbox("energy/latency", lines=1, label="Formula")
|
279 |
+
with gr.Column(scale=1):
|
280 |
+
with gr.Row():
|
281 |
+
add_col_btn = gr.Button("Add to table (⏎)", elem_classes=["btn-submit"])
|
282 |
+
with gr.Row():
|
283 |
+
clear_input_btn = gr.Button("Clear")
|
284 |
+
with gr.Row():
|
285 |
+
add_col_message = gr.HTML("")
|
286 |
+
colname_input.submit(
|
287 |
+
TableManager.add_column,
|
288 |
+
inputs=[tbm, colname_input, formula_input],
|
289 |
+
outputs=[dataframe, add_col_message],
|
290 |
+
)
|
291 |
+
formula_input.submit(
|
292 |
+
TableManager.add_column,
|
293 |
+
inputs=[tbm, colname_input, formula_input],
|
294 |
+
outputs=[dataframe, add_col_message],
|
295 |
+
)
|
296 |
+
add_col_btn.click(
|
297 |
+
TableManager.add_column,
|
298 |
+
inputs=[tbm, colname_input, formula_input],
|
299 |
+
outputs=[dataframe, add_col_message],
|
300 |
+
)
|
301 |
+
clear_input_btn.click(
|
302 |
+
lambda: (None, None, None),
|
303 |
+
inputs=None,
|
304 |
+
outputs=[colname_input, formula_input, add_col_message],
|
305 |
+
)
|
306 |
+
|
307 |
+
# Block 3: Allow users to plot 2D and 3D scatter plots.
|
308 |
+
with gr.Row():
|
309 |
+
with gr.Column(scale=3):
|
310 |
+
with gr.Row():
|
311 |
+
# Initialize the dropdown choices with the global TableManager with just the original columns.
|
312 |
+
axis_dropdowns = global_tbm.get_dropdown()
|
313 |
+
with gr.Column(scale=1):
|
314 |
+
with gr.Row():
|
315 |
+
plot_btn = gr.Button("Plot", elem_classes=["btn-submit"])
|
316 |
+
with gr.Row():
|
317 |
+
clear_plot_btn = gr.Button("Clear")
|
318 |
+
with gr.Accordion("Plot size (600 x 600 by default)", open=False):
|
319 |
+
with gr.Row():
|
320 |
+
plot_width_input = gr.Textbox("600", lines=1, label="Width (px)")
|
321 |
+
plot_height_input = gr.Textbox("600", lines=1, label="Height (px)")
|
322 |
+
with gr.Row():
|
323 |
+
plot = gr.Plot()
|
324 |
+
with gr.Row():
|
325 |
+
plot_message = gr.HTML("")
|
326 |
+
add_col_btn.click(TableManager.update_dropdown, inputs=tbm, outputs=axis_dropdowns) # type: ignore
|
327 |
+
plot_width_input.submit(
|
328 |
+
TableManager.plot_scatter,
|
329 |
+
inputs=[tbm, plot_width_input, plot_height_input, *axis_dropdowns],
|
330 |
+
outputs=[plot, plot_width_input, plot_height_input, plot_message],
|
331 |
+
)
|
332 |
+
plot_height_input.submit(
|
333 |
+
TableManager.plot_scatter,
|
334 |
+
inputs=[tbm, plot_width_input, plot_height_input, *axis_dropdowns],
|
335 |
+
outputs=[plot, plot_width_input, plot_height_input, plot_message],
|
336 |
+
)
|
337 |
+
plot_btn.click(
|
338 |
+
TableManager.plot_scatter,
|
339 |
+
inputs=[tbm, plot_width_input, plot_height_input, *axis_dropdowns],
|
340 |
+
outputs=[plot, plot_width_input, plot_height_input, plot_message],
|
341 |
+
)
|
342 |
+
clear_plot_btn.click(
|
343 |
+
lambda: (None,) * 7,
|
344 |
+
None,
|
345 |
+
outputs=[*axis_dropdowns, plot, plot_width_input, plot_height_input, plot_message],
|
346 |
+
)
|
347 |
+
|
348 |
+
# Block 4: Leaderboard date.
|
349 |
+
with gr.Row():
|
350 |
+
gr.HTML(f"<h3 style='color: gray'>Date: {latest_date}</h3>")
|
351 |
+
|
352 |
+
# Tab 2: About page.
|
353 |
+
with gr.TabItem("About"):
|
354 |
+
# Read in LEADERBOARD.md
|
355 |
+
gr.Markdown(open("LEADERBOARD.md").read())
|
356 |
+
|
357 |
+
# Load the table on page load.
|
358 |
+
block.load(lambda tbm: tbm.full_df, inputs=tbm, outputs=dataframe)
|
359 |
+
|
360 |
+
block.launch()
|
data/2023-06-17/A40_chat-concise_benchmark.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model,throughput,response_length,latency,energy
|
2 |
+
lmsys/vicuna-7B,29.829026631206286,271.9100067159167,9.132098360456242,2143.52561215591
|
3 |
+
StabilityAI/stablelm-tuned-alpha-7b,26.57393014131587,255.54365345869712,9.397491535841587,2439.293790463411
|
4 |
+
databricks/dolly-v2-12b,15.273711386107992,141.4445936870383,8.891394107289802,2095.3922259908463
|
5 |
+
tatsu-lab/alpaca-7B,29.852723929321897,121.29281396910679,4.0361613936664735,1080.58840899923
|
6 |
+
camel-ai/CAMEL-13B-Combined-Data,17.460563027552272,283.4543317662861,16.28615281731328,4262.537929482914
|
7 |
+
BAIR/koala-7b,29.888796737616882,251.45399597044997,8.385359924898546,1940.5972622565405
|
8 |
+
h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2,29.57083939186151,212.1212222968435,7.140702722639097,1524.9156188717134
|
9 |
+
lmsys/vicuna-13B,17.282398545945153,269.62491605104094,15.6926107484118,4203.671348891897
|
10 |
+
togethercomputer/RedPajama-INCITE-7B-Chat,14.451529449594792,275.07991940899933,18.294811550193185,2937.839604096736
|
11 |
+
metaai/llama-13B,15.493654667854246,81.26796507723304,4.881042191492302,1264.815973472223
|
12 |
+
BAIR/koala-13b,17.393931641363825,252.56816655473472,14.499323956849762,3747.8785020146615
|
13 |
+
nomic-ai/gpt4all-13b-snoozy,17.45953616124214,217.35325721961047,12.440528350608277,3263.628521155058
|
14 |
+
BlinkDL/RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth,32.86455306586691,235.19274680993956,6.718876629108356,1661.2857568838062
|
15 |
+
lmsys/fastchat-t5-3b-v1.0,21.09615171109894,313.09905977165886,18.366778339359637,1807.6800728676938
|
16 |
+
project-baize/baize-v2-7B,28.92598212176896,321.06010745466756,10.940218308832323,2644.9160527197046
|
17 |
+
OpenAssistant/oasst-sft-1-pythia-12b,16.01484723680571,249.1007387508395,15.153340834740217,3829.1071417058643
|
18 |
+
metaai/llama-7B,25.80475014752762,63.463734049697784,2.2525196486312047,539.0479066487654
|
19 |
+
Neutralzz/BiLLa-7B-SFT,29.382300021941255,141.6155137676293,4.84122748247456,1131.9990564138398
|
20 |
+
openaccess-ai-collective/manticore-13b-chat-pyg,17.220798012743607,268.91269308260576,15.692034786355059,4051.8244570182064
|
21 |
+
FreedomIntelligence/phoenix-inst-chat-7b,32.33242374435414,229.95869711215582,6.910495058340042,2049.7076356614534
|
data/2023-06-17/A40_chat_benchmark.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model,throughput,response_length,latency,energy
|
2 |
+
lmsys/vicuna-7B,30.071255281840546,284.27266621893887,9.474226236086707,2239.068904633984
|
3 |
+
lmsys/vicuna-13B,17.50774908972375,281.298522498321,16.096842177613397,4265.287245130957
|
4 |
+
tatsu-lab/alpaca-7B,30.09713731797294,125.20013431833445,4.129986896187982,916.045386501007
|
5 |
+
metaai/llama-7B,25.768609507174105,64.59032907991941,2.284814629996714,525.7081235728675
|
6 |
+
metaai/llama-13B,15.699146010424393,80.32236400268637,4.757332595030835,1293.689832437891
|
7 |
+
camel-ai/CAMEL-13B-Combined-Data,17.40620018812374,292.3438549361988,16.834190191676036,4466.796722968406
|
8 |
+
BlinkDL/RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth,33.10830960148045,243.21793149764943,6.9481068778416555,1833.7241615177682
|
9 |
+
databricks/dolly-v2-12b,15.597444626791148,148.3270651443922,9.168758730287117,2362.087664204047
|
10 |
+
FreedomIntelligence/phoenix-inst-chat-7b,32.663340053939855,243.14909335124244,7.271332307256473,2149.2483156478947
|
11 |
+
h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2,28.851651162429675,216.66286098052385,7.544740398256815,1636.1981326393268
|
12 |
+
lmsys/fastchat-t5-3b-v1.0,21.694893194918894,312.84116856950976,17.951570049172194,1787.5060366017656
|
13 |
+
Neutralzz/BiLLa-7B-SFT,29.49201862368961,159.29986568166555,5.443799112468728,1218.644757555166
|
14 |
+
nomic-ai/gpt4all-13b-snoozy,17.46230398293782,250.1742780389523,14.322901371942146,4093.901904969787
|
15 |
+
openaccess-ai-collective/manticore-13b-chat-pyg,17.485883513135143,289.58697112155807,16.594830177599892,4316.488665547325
|
16 |
+
OpenAssistant/oasst-sft-1-pythia-12b,16.056643548610985,254.26259234385495,15.462307354021265,3891.8823989257867
|
17 |
+
project-baize/baize-v2-7B,29.004360284420006,324.24546675621224,11.011670755046683,2621.3502615853154
|
18 |
+
BAIR/koala-7b,29.723806931945834,260.7196104768301,8.720630589929986,2017.3295624580246
|
19 |
+
BAIR/koala-13b,17.451436035057224,262.5295500335796,15.030911340299886,3827.6102800537265
|
20 |
+
StabilityAI/stablelm-tuned-alpha-7b,26.413142361637988,255.34687709872398,9.454673889303727,2319.91146675621
|
21 |
+
togethercomputer/RedPajama-INCITE-7B-Chat,21.410571862447824,279.5094022834117,12.506414288534286,2541.441298522497
|
data/2023-06-17/A40_instruct-concise_benchmark.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model,throughput,response_length,latency,energy
|
2 |
+
openaccess-ai-collective/manticore-13b-chat-pyg,17.4993855646115,229.5795836131632,13.132503049058466,3501.182491605137
|
3 |
+
lmsys/vicuna-7B,29.046593546528904,212.760241773002,7.3296203452423265,1706.1712568838818
|
4 |
+
BlinkDL/RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth,33.07481929862108,242.74177300201478,6.943508281124177,1787.5870651446628
|
5 |
+
tatsu-lab/alpaca-7B,29.475397017987323,117.95399597044997,3.9749026008906023,927.7634805239352
|
6 |
+
metaai/llama-13B,15.786345111463364,102.35762256548018,6.009854743435423,1590.8409496307413
|
7 |
+
OpenAssistant/oasst-sft-1-pythia-12b,16.03459728484094,241.31732706514438,14.686811677200872,3673.6327222969167
|
8 |
+
BAIR/koala-7b,29.75360600658546,200.51544660846204,6.658448294727219,1426.3522693082625
|
9 |
+
databricks/dolly-v2-12b,15.330621441395213,149.7411014103425,9.354867176525545,2240.8669214236447
|
10 |
+
togethercomputer/RedPajama-INCITE-7B-Chat,20.849945627496787,275.1017461383479,12.625316554842463,2521.5761004031265
|
11 |
+
BAIR/koala-13b,17.3129078938621,185.43653458697113,10.592529783475095,3058.9324654130387
|
12 |
+
metaai/llama-7B,26.263780879593444,96.94089993284084,3.35252434620665,871.9958969106643
|
13 |
+
lmsys/vicuna-13B,17.391771626218006,199.80960376091338,11.55835909586615,3031.3180846202845
|
14 |
+
camel-ai/CAMEL-13B-Combined-Data,17.27426964902266,194.22028206850234,11.174119858559074,2956.610076225849
|
15 |
+
FreedomIntelligence/phoenix-inst-chat-7b,32.63089093979437,197.44492948287441,5.895621189552368,1736.5409079919812
|
16 |
+
StabilityAI/stablelm-tuned-alpha-7b,26.523547972773766,244.16588314304903,8.984752658064695,2305.969679315211
|
17 |
+
h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2,29.926231643904146,223.85426460711886,7.510739674653152,1676.2203126259078
|
18 |
+
Neutralzz/BiLLa-7B-SFT,29.118626503392385,104.97817327065144,3.5443721553023035,818.274197783844
|
19 |
+
nomic-ai/gpt4all-13b-snoozy,17.423064750595767,135.3938885157824,7.734149922101941,1871.6546057756862
|
20 |
+
project-baize/baize-v2-7B,28.13796712305154,262.9902619207522,9.250474432119292,2105.324460711873
|
21 |
+
lmsys/fastchat-t5-3b-v1.0,40.20822673632634,281.74110141034254,10.492163513616964,1110.3276249158694
|
data/2023-06-17/A40_instruct_benchmark.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model,throughput,response_length,latency,energy
|
2 |
+
FreedomIntelligence/phoenix-inst-chat-7b,32.795664087070854,221.2484889187374,6.588933942256567,1863.514234721291
|
3 |
+
tatsu-lab/alpaca-7B,30.107577299286163,126.36030893216925,4.161682809197595,973.6026363331109
|
4 |
+
togethercomputer/RedPajama-INCITE-7B-Chat,17.009700321585225,282.3190060443251,15.98330062659441,2834.287281396827
|
5 |
+
lmsys/vicuna-7B,29.417977025894693,267.841840161182,9.164755312435684,2131.3740241775145
|
6 |
+
BlinkDL/RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth,33.80171881884355,264.9563465413029,7.560664676534496,2049.7698284082962
|
7 |
+
databricks/dolly-v2-12b,15.67950302952103,155.61316319677636,9.582122375200395,2369.283402619204
|
8 |
+
camel-ai/CAMEL-13B-Combined-Data,17.522554791478672,245.7824042981867,14.081241566503387,3646.9116689053053
|
9 |
+
BAIR/koala-7b,29.350583449996343,253.7239758226998,8.64835721658589,1918.897159502941
|
10 |
+
openaccess-ai-collective/manticore-13b-chat-pyg,17.267666593018745,276.03559435862996,16.03621509688224,4113.539149429272
|
11 |
+
OpenAssistant/oasst-sft-1-pythia-12b,14.438332974888972,253.76796507723304,17.249506058312747,3936.226839825601
|
12 |
+
h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2,29.207313503768304,233.47951645399598,8.096591130254916,1804.4821860309694
|
13 |
+
project-baize/baize-v2-7B,28.47516339265779,306.76561450638013,10.688193155492014,2415.801835795991
|
14 |
+
StabilityAI/stablelm-tuned-alpha-7b,23.120196395716167,244.85930154466084,10.369934308136857,2445.444213566122
|
15 |
+
lmsys/vicuna-13B,17.595105665816288,263.95567494963063,15.050040050311223,3967.4957498321023
|
16 |
+
Neutralzz/BiLLa-7B-SFT,28.937231313361377,142.33848220282067,4.7632941655637016,1177.3565590999485
|
17 |
+
metaai/llama-13B,15.747651109641996,101.69375419744796,5.970782866386873,1693.432888515849
|
18 |
+
lmsys/fastchat-t5-3b-v1.0,31.014371537480102,357.13734049697786,17.964342393854206,1758.7082199462513
|
19 |
+
nomic-ai/gpt4all-13b-snoozy,17.558360268154225,232.67461383478846,13.290953806575821,3411.2449123573792
|
20 |
+
BAIR/koala-13b,17.468010116614902,254.08529214237743,14.4913390549458,3858.416870718604
|
21 |
+
metaai/llama-7B,26.40244189851013,104.19308260577569,3.608983782098236,864.4181752854275
|
data/2023-06-17/models.json
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"lmsys/vicuna-7B": {
|
3 |
+
"url": "https://lmsys.org/blog/2023-03-30-vicuna/",
|
4 |
+
"nickname": "LMSys/vicuna-7B",
|
5 |
+
"params": 7
|
6 |
+
},
|
7 |
+
"lmsys/vicuna-13B": {
|
8 |
+
"url": "https://lmsys.org/blog/2023-03-30-vicuna/",
|
9 |
+
"nickname": "LMSys/vicuna-13B",
|
10 |
+
"params": 13
|
11 |
+
},
|
12 |
+
"tatsu-lab/alpaca-7B": {
|
13 |
+
"url": "https://huggingface.co/tatsu-lab/alpaca-7b-wdiff",
|
14 |
+
"nickname": "tatsu-lab/alpaca-7B",
|
15 |
+
"params": 7
|
16 |
+
},
|
17 |
+
"metaai/llama-7B": {
|
18 |
+
"url": "https://github.com/facebookresearch/llama",
|
19 |
+
"nickname": "MetaAI/LLaMA-7B",
|
20 |
+
"params": 7
|
21 |
+
},
|
22 |
+
"metaai/llama-13B": {
|
23 |
+
"url": "https://github.com/facebookresearch/llama",
|
24 |
+
"nickname": "MetaAI/LLaMA-13B",
|
25 |
+
"params": 13
|
26 |
+
},
|
27 |
+
"camel-ai/CAMEL-13B-Combined-Data": {
|
28 |
+
"url": "https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data",
|
29 |
+
"nickname": "Camel-AI/CAMEL-13B-Combined-Data",
|
30 |
+
"params": 13
|
31 |
+
},
|
32 |
+
"BlinkDL/RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth": {
|
33 |
+
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven",
|
34 |
+
"nickname": "BlinkDL/RWKV-4-Raven-7B",
|
35 |
+
"params": 7
|
36 |
+
},
|
37 |
+
"databricks/dolly-v2-12b": {
|
38 |
+
"url": "https://huggingface.co/databricks/dolly-v2-12b",
|
39 |
+
"nickname": "databricks/dolly-v2-12B",
|
40 |
+
"params": 12
|
41 |
+
},
|
42 |
+
"FreedomIntelligence/phoenix-inst-chat-7b": {
|
43 |
+
"url": "https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b",
|
44 |
+
"nickname": "FreedomIntelligence/phoenix-inst-chat-7b",
|
45 |
+
"params": 7
|
46 |
+
},
|
47 |
+
"h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2": {
|
48 |
+
"url": "https://huggingface.co/h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2",
|
49 |
+
"nickname": "H2OAI/H2OGPT-oasst1-7B",
|
50 |
+
"params": 7
|
51 |
+
},
|
52 |
+
"lmsys/fastchat-t5-3b-v1.0": {
|
53 |
+
"url": "https://huggingface.co/lmsys/fastchat-t5-3b-v1.0",
|
54 |
+
"nickname": "LMSys/fastchat-t5-3b-v1.0",
|
55 |
+
"params": 3
|
56 |
+
},
|
57 |
+
"Neutralzz/BiLLa-7B-SFT": {
|
58 |
+
"url": "https://huggingface.co/Neutralzz/BiLLa-7B-SFT",
|
59 |
+
"nickname": "Neutralzz/BiLLa-7B-SFT",
|
60 |
+
"params": 7
|
61 |
+
},
|
62 |
+
"nomic-ai/gpt4all-13b-snoozy": {
|
63 |
+
"url": "https://huggingface.co/nomic-ai/gpt4all-13b-snoozy",
|
64 |
+
"nickname": "nomic-ai/gpt4all-13b-snoozy",
|
65 |
+
"params": 13
|
66 |
+
},
|
67 |
+
"openaccess-ai-collective/manticore-13b-chat-pyg": {
|
68 |
+
"url": "https://huggingface.co/openaccess-ai-collective/manticore-13b-chat-pyg",
|
69 |
+
"nickname": "openaccess-ai-collective/manticore-13b-chat-pyg",
|
70 |
+
"params": 13
|
71 |
+
},
|
72 |
+
"OpenAssistant/oasst-sft-1-pythia-12b": {
|
73 |
+
"url": "https://huggingface.co/OpenAssistant/oasst-sft-1-pythia-12b",
|
74 |
+
"nickname": "OpenAssistant/oasst-sft-1-pythia-12b",
|
75 |
+
"params": 12
|
76 |
+
},
|
77 |
+
"project-baize/baize-v2-7B": {
|
78 |
+
"url": "https://huggingface.co/project-baize/baize-v2-7B",
|
79 |
+
"nickname": "project-baize/baize-v2-7B",
|
80 |
+
"params": 7
|
81 |
+
},
|
82 |
+
"BAIR/koala-7b": {
|
83 |
+
"url": "https://bair.berkeley.edu/blog/2023/04/03/koala/",
|
84 |
+
"nickname": "BAIR/koala-7b",
|
85 |
+
"params": 7
|
86 |
+
},
|
87 |
+
"BAIR/koala-13b": {
|
88 |
+
"url": "https://bair.berkeley.edu/blog/2023/04/03/koala/",
|
89 |
+
"nickname": "BAIR/koala-13b",
|
90 |
+
"params": 13
|
91 |
+
},
|
92 |
+
"StabilityAI/stablelm-tuned-alpha-7b": {
|
93 |
+
"url": "https://huggingface.co/StabilityAI/stablelm-tuned-alpha-7b",
|
94 |
+
"nickname": "StabilityAI/stablelm-tuned-alpha-7b",
|
95 |
+
"params": 7
|
96 |
+
},
|
97 |
+
"togethercomputer/RedPajama-INCITE-7B-Chat": {
|
98 |
+
"url": "https://huggingface.co/togethercomputer/RedPajama-INCITE-7B-Chat",
|
99 |
+
"nickname": "togethercomputer/RedPajama-INCITE-7B-Chat",
|
100 |
+
"params": 7
|
101 |
+
}
|
102 |
+
}
|
data/2023-06-17/schema.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gpu: ["A40"]
|
2 |
+
task: ["chat", "chat-concise", "instruct", "instruct-concise"]
|
data/2023-06-17/score.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model,lmsys_elo
|
2 |
+
lmsys/vicuna-7B,1007
|
3 |
+
lmsys/vicuna-13B,1054
|
4 |
+
tatsu-lab/alpaca-7B,NaN
|
5 |
+
metaai/llama-7B,NaN
|
6 |
+
metaai/llama-13B,854
|
7 |
+
camel-ai/CAMEL-13B-Combined-Data,NaN
|
8 |
+
BlinkDL/RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth,NaN
|
9 |
+
databricks/dolly-v2-12b,866
|
10 |
+
FreedomIntelligence/phoenix-inst-chat-7b,NaN
|
11 |
+
h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2,NaN
|
12 |
+
lmsys/fastchat-t5-3b-v1.0,941
|
13 |
+
Neutralzz/BiLLa-7B-SFT,NaN
|
14 |
+
nomic-ai/gpt4all-13b-snoozy,NaN
|
15 |
+
openaccess-ai-collective/manticore-13b-chat-pyg,NaN
|
16 |
+
OpenAssistant/oasst-sft-1-pythia-12b,921
|
17 |
+
project-baize/baize-v2-7B,NaN
|
18 |
+
BAIR/koala-7b,NaN
|
19 |
+
BAIR/koala-13b,980
|
20 |
+
StabilityAI/stablelm-tuned-alpha-7b,882
|
21 |
+
togethercomputer/RedPajama-INCITE-7B-Chat,NaN
|
index.html
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<title>ML.ENERGY Leaderboard</title>
|
5 |
+
<meta charset="UTF-8">
|
6 |
+
<meta name="viewport" content="width=device-width, initial-scale=1">
|
7 |
+
<script type="module" src="https://gradio.s3-us-west-2.amazonaws.com/3.23.0/gradio.js"></script>
|
8 |
+
</head>
|
9 |
+
<body>
|
10 |
+
<gradio-app src="https://symbioticlab-ml-energy-leaderboard.hf.space?__theme=light"></gradio-app>
|
11 |
+
</body>
|
12 |
+
</html>
|
requirements-benchmark.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
zeus-ml
|
2 |
+
fschat==0.2.14
|
3 |
+
rwkv==0.7.5
|
4 |
+
einops
|
5 |
+
tyro
|
requirements.txt
CHANGED
@@ -1,5 +1,2 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
rwkv==0.7.5
|
4 |
-
einops
|
5 |
-
tyro
|
|
|
1 |
+
plotly==5.15.0
|
2 |
+
gradio==3.35.2
|
|
|
|
|
|