File size: 1,751 Bytes
03300b3
 
 
 
 
 
 
 
 
4faa311
 
50f7379
4faa311
50f7379
 
ee17529
3181180
ee17529
54c5e53
ee17529
 
54c5e53
ee17529
 
54c5e53
50f7379
 
4f89650
af347f8
ee17529
54c5e53
 
 
 
 
 
4f89650
54c5e53
 
 
 
 
4f89650
54c5e53
 
 
ee17529
 
4f89650
ee17529
 
54c5e53
 
 
ee17529
 
4f89650
 
54c5e53
 
ee17529
 
54c5e53
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
title: README
emoji: 📚
colorFrom: green
colorTo: indigo
sdk: static
pinned: false
---

# MLX Community

A community org for model weights compatible with [mlx-examples](https://github.com/ml-explore/mlx-examples) powered by [MLX](https://github.com/ml-explore/mlx).

These are pre-converted weights and ready to be used in the example scripts.


# Quick start for LLMs

Install `mlx-lm`:

```
pip install mlx-lm
```

You can use `mlx-lm` from the command line. For example:

```
mlx_lm.generate --model mlx-community/Mistral-7B-Instruct-v0.3-4bit --prompt "hello"
```

This will download a Mistral 7B model from the Hugging Face Hub and generate
text using the given prompt. 

For a full list of options run:

```
mlx_lm.generate --help
```

To quantize a model from the command line run:

```
mlx_lm.convert --hf-path mistralai/Mistral-7B-Instruct-v0.3 -q 
```

For more options run:

```
mlx_lm.convert --help
```

You can upload new models to Hugging Face by specifying `--upload-repo` to
`convert`. For example, to upload a quantized Mistral-7B model to the 
[MLX Hugging Face community](https://huggingface.co/mlx-community) you can do:

```
mlx_lm.convert \
    --hf-path mistralai/Mistral-7B-Instruct-v0.3 \
    -q \
    --upload-repo mlx-community/my-4bit-mistral
```

For more details on the API checkout the full [README](https://github.com/ml-explore/mlx-examples/tree/main/llms)


### Other Examples:

For more examples, visit the [MLX Examples](https://github.com/ml-explore/mlx-examples) repo. The repo includes examples of:

- Parameter efficient fine tuning with LoRA
- Speech recognition with Whisper
- Image generation with Stable Diffusion

  and many other examples of different machine learning applications and algorithms.