Spaces:
Running
Running
import os | |
import shutil | |
import subprocess | |
import signal | |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
import gradio as gr | |
from huggingface_hub import create_repo, HfApi | |
from huggingface_hub import snapshot_download | |
from huggingface_hub import whoami | |
from huggingface_hub import ModelCard | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from textwrap import dedent | |
from mlx_lm import convert | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
def process_model(model_id, q_method,): | |
if oauth_token.token is None: | |
raise ValueError("You must be logged in to use GGUF-my-repo") | |
model_name = model_id.split('/')[-1] | |
username = whoami(oauth_token.token)["name"] | |
try: | |
upload_repo = username + "/" + model_name + "-mlx" | |
convert(model_id, quantize=True, upload_repo=upload_repo) | |
return ( | |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', | |
"llama.png", | |
) | |
except Exception as e: | |
return (f"Error: {e}", "error.png") | |
finally: | |
shutil.rmtree("mlx_model", ignore_errors=True) | |
print("Folder cleaned up successfully!") | |
css="""/* Custom CSS to allow scrolling */ | |
.gradio-container {overflow-y: auto;} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("You must be logged in to use MLX-my-repo.") | |
gr.LoginButton(min_width=250) | |
model_id = HuggingfaceHubSearch( | |
label="Hub Model ID", | |
placeholder="Search for model id on Huggingface", | |
search_type="model", | |
) | |
q_method = gr.Dropdown( | |
["Q4", "Q8"], | |
label="Quantization Method", | |
info="MLX quantization type", | |
value="Q4", | |
filterable=False, | |
visible=True | |
) | |
iface = gr.Interface( | |
fn=process_model, | |
inputs=[ | |
model_id, | |
q_method, | |
], | |
outputs=[ | |
gr.Markdown(label="output"), | |
gr.Image(show_label=False), | |
], | |
title="Create your own MLX Quants, blazingly fast ⚡!", | |
description="The space takes an HF repo as an input, quantizes it and creates a Public/ Private repo containing the selected quant under your HF user namespace.", | |
api_name=False | |
) | |
def restart_space(): | |
HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=21600) | |
scheduler.start() | |
# Launch the interface | |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |