mmenendezg's picture
Add files for the gradio app
c5c5181
raw
history blame
5.54 kB
import os
import numpy as np
from PIL import Image
import cv2
import torch
from torch.utils.data import DataLoader
import albumentations as A
import pytorch_lightning as pl
from transformers import AutoImageProcessor
from datasets import Dataset, DatasetDict
# Checkpoint of the model used in the projec
MODEL_CHECKPOINT = "apple/deeplabv3-mobilevit-xx-small"
# Size of the image used to train the model
IMG_SIZE = [256, 256]
class FluorescentNeuronalDataModule(pl.LightningDataModule):
def __init__(self, batch_size, data_dir, dataset_size=1.0):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.image_processor = AutoImageProcessor.from_pretrained(
MODEL_CHECKPOINT, do_reduce_labels=False
)
self.image_resizer = A.Compose(
[
A.Resize(
width=IMG_SIZE[0],
height=IMG_SIZE[1],
interpolation=cv2.INTER_NEAREST,
)
]
)
self.image_augmentator = A.Compose(
[
A.HorizontalFlip(p=0.6),
A.VerticalFlip(p=0.6),
A.RandomBrightnessContrast(p=0.6),
A.RandomGamma(p=0.6),
A.HueSaturationValue(p=0.6),
]
)
# Percentage of the dataset
self.dataset_size = dataset_size
def _create_dataset(self):
images_path = os.path.join(self.data_dir, "all_images", "images")
masks_path = os.path.join(self.data_dir, "all_masks", "masks")
list_images = os.listdir(images_path)
# Determine the size of the dataset
if self.dataset_size < 1.0:
n_images = int(len(list_images) * self.dataset_size)
list_images = list_images[:n_images]
images = []
masks = []
for image_filename in list_images:
image_path = os.path.join(images_path, image_filename)
mask_path = os.path.join(masks_path, image_filename)
image = np.array(Image.open(image_path).convert("RGB"), dtype=np.uint8)
mask = np.array(Image.open(mask_path).convert("L"), dtype=np.uint8)
mask = (mask / 255).astype(np.uint8)
images.append(image)
masks.append(mask)
dataset = Dataset.from_dict({"image": images, "mask": masks})
# Split the dataset into train, val, and test sets
dataset = dataset.train_test_split(test_size=0.1)
train_val = dataset["train"]
test_ds = dataset["test"]
del dataset
train_val = train_val.train_test_split(test_size=0.2)
train_ds = train_val["train"]
valid_ds = train_val["test"]
del train_val
dataset = DatasetDict(
{"train": train_ds, "validation": valid_ds, "test": test_ds}
)
del train_ds, valid_ds, test_ds
return dataset
def _transform_train_data(self, batch):
# Preprocess the images
images, masks = [], []
for i, m in zip(batch["image"], batch["mask"]):
img = np.asarray(i, dtype=np.uint8)
mask = np.asarray(m, dtype=np.uint8)
# First resize the images and masks
resized_outputs = self.image_resizer(image=img, mask=mask)
images.append(resized_outputs["image"])
masks.append(resized_outputs["mask"])
# Then augment the images
augmented_outputs = self.image_augmentator(
image=resized_outputs["image"], mask=resized_outputs["mask"]
)
images.append(augmented_outputs["image"])
masks.append(augmented_outputs["mask"])
inputs = self.image_processor(
images=images,
return_tensors="pt",
)
inputs["labels"] = torch.tensor(masks, dtype=torch.long)
return inputs
def _transform_data(self, batch):
# Preprocess the images
images, masks = [], []
for i, m in zip(batch["image"], batch["mask"]):
img = np.asarray(i, dtype=np.uint8)
mask = np.asarray(m, dtype=np.uint8)
# Resize the images and masks
resized_outputs = self.image_resizer(image=img, mask=mask)
images.append(resized_outputs["image"])
masks.append(resized_outputs["mask"])
inputs = self.image_processor(
images=images,
return_tensors="pt",
)
inputs["labels"] = inputs["labels"] = torch.tensor(masks, dtype=torch.long)
return inputs
def setup(self, stage=None):
dataset = self._create_dataset()
train_ds = dataset["train"]
valid_ds = dataset["validation"]
test_ds = dataset["test"]
if stage is None or stage == "fit":
self.train_ds = train_ds.with_transform(self._transform_train_data)
self.valid_ds = valid_ds.with_transform(self._transform_data)
if stage is None or stage == "test" or stage == "predict":
self.test_ds = test_ds.with_transform(self._transform_data)
def train_dataloader(self):
return DataLoader(self.train_ds, batch_size=self.batch_size, shuffle=True)
def val_dataloader(self):
return DataLoader(self.valid_ds, batch_size=self.batch_size)
def test_dataloader(self):
return DataLoader(self.test_ds, batch_size=self.batch_size)
def predict_dataloader(self):
return DataLoader(self.test_ds, batch_size=self.batch_size)