mms-zeroshot / zeroshot.py
Vineel Pratap
update_model
a4107b1
raw
history blame
5.13 kB
import os
import tempfile
import re
import librosa
import torch
import json
import numpy as np
from transformers import Wav2Vec2ForCTC, AutoProcessor
from huggingface_hub import hf_hub_download
from torchaudio.models.decoder import ctc_decoder
uroman_dir = "uroman"
assert os.path.exists(uroman_dir)
UROMAN_PL = os.path.join(uroman_dir, "bin", "uroman.pl")
ASR_SAMPLING_RATE = 16_000
WORD_SCORE_DEAULT_IF_LM = -0.18
WORD_SCORE_DEAULT_IF_NOLM = -3.5
LM_SCORE_DEAULT = 1.48
MODEL_ID = "upload/mms_zs"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
token_file = "upload/mms_zs/tokens.txt"
def error_check_file(filepath):
if not isinstance(filepath, str):
return "Expected file to be of type 'str'. Instead got {}".format(
type(filepath)
)
if not os.path.exists(filepath):
return "Input file '{}' doesn't exists".format(type(filepath))
def norm_uroman(text):
text = text.lower()
text = text.replace("’", "'")
text = re.sub("([^a-z' ])", " ", text)
text = re.sub(" +", " ", text)
return text.strip()
def uromanize(words):
iso = "xxx"
with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2:
with open(tf.name, "w") as f:
f.write("\n".join(words))
cmd = f"perl " + UROMAN_PL
cmd += f" -l {iso} "
cmd += f" < {tf.name} > {tf2.name}"
os.system(cmd)
lexicon = {}
with open(tf2.name) as f:
for idx, line in enumerate(f):
if not line.strip():
continue
line = re.sub(r"\s+", " ", norm_uroman(line)).strip()
lexicon[words[idx]] = " ".join(line) + " |"
return lexicon
def load_lexicon(filepath):
words = {}
with open(filepath) as f:
for line in f:
line = line.strip()
# ignore invalid words.
if not line or " " in line or len(line) > 50:
continue
for w in line.split():
words[w.lower()] = True
return uromanize(list(words.keys()))
def process(
audio_data,
words_file,
lm_path=None,
wscore=None,
lmscore=None,
wscore_usedefault=True,
lmscore_usedefault=True,
):
if isinstance(audio_data, tuple):
# microphone
sr, audio_samples = audio_data
audio_samples = (audio_samples / 32768.0).astype(np.float)
assert sr == ASR_SAMPLING_RATE, "Invalid sampling rate"
else:
# file upload
assert isinstance(audio_data, str)
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
# print(audio_samples[:10])
# print("I'm here 102")
print("len audio_samples", len(audio_samples))
lang_code = "eng"
# processor.tokenizer.set_target_lang(lang_code)
# print("I'm here 107")
# model.load_adapter(lang_code)
# print("I'm here 109")
inputs = processor(
audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt"
)
# print("I'm here 106")
print("inputs type", type(inputs))
# print("inputs size", inputs.size)
# set device
if torch.cuda.is_available():
device = torch.device("cuda")
elif (
hasattr(torch.backends, "mps")
and torch.backends.mps.is_available()
and torch.backends.mps.is_built()
):
device = torch.device("mps")
else:
device = torch.device("cpu")
device = torch.device("cpu")
model.to(device)
inputs = inputs.to(device)
# print("I'm here 122")
with torch.no_grad():
outputs = model(**inputs).logits
# Setup lexicon and decoder
# print("before uroman")
lexicon = load_lexicon(words_file)
# print("after uroman")
# print("len lexicon", len(lexicon))
with tempfile.NamedTemporaryFile() as lexicon_file:
with open(lexicon_file.name, "w") as f:
idx = 10
for word, spelling in lexicon.items():
f.write(word + " " + spelling + "\n")
if idx % 100 == 0:
print(word, spelling, flush=True)
idx += 1
if wscore_usedefault:
wscore = (
WORD_SCORE_DEAULT_IF_LM
if lm_path is not None
else WORD_SCORE_DEAULT_IF_NOLM
)
if lmscore_usedefault:
lmscore = LM_SCORE_DEAULT if lm_path is not None else 0
beam_search_decoder = ctc_decoder(
lexicon=lexicon_file.name,
tokens=token_file,
lm=None,
nbest=1,
beam_size=500,
beam_size_token=50,
lm_weight=lmscore,
word_score=wscore,
sil_score=0,
blank_token="<s>",
)
beam_search_result = beam_search_decoder(outputs.to("cpu"))
transcription = " ".join(beam_search_result[0][0].words).strip()
return transcription
ZS_EXAMPLES = [["upload/english.mp3", "upload/words_top10k.txt"]]
print(process("upload/english.mp3", "upload/words_top10k.txt"))