Spaces:
Runtime error
Runtime error
changed to run speecht5
Browse files
app.py
CHANGED
@@ -3,19 +3,25 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import VitsModel, VitsTokenizer, pipeline
|
7 |
-
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
|
|
|
|
11 |
# load speech translation checkpoint
|
12 |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint for MMS
|
15 |
-
model = VitsModel.from_pretrained("Matthijs/mms-tts-fra")
|
16 |
-
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
|
17 |
|
|
|
18 |
|
|
|
|
|
19 |
|
20 |
def translate(audio):
|
21 |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"})
|
@@ -23,9 +29,9 @@ def translate(audio):
|
|
23 |
|
24 |
|
25 |
def synthesise(text):
|
26 |
-
inputs =
|
27 |
-
speech = model(inputs["input_ids"].to(device))
|
28 |
-
return speech.
|
29 |
|
30 |
|
31 |
def speech_to_speech_translation(audio):
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
#from transformers import VitsModel, VitsTokenizer, pipeline
|
7 |
+
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
12 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
13 |
+
|
14 |
# load speech translation checkpoint
|
15 |
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
16 |
|
17 |
# load text-to-speech checkpoint for MMS
|
18 |
+
# model = VitsModel.from_pretrained("Matthijs/mms-tts-fra")
|
19 |
+
# tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
|
20 |
|
21 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
22 |
|
23 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_french")
|
24 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
25 |
|
26 |
def translate(audio):
|
27 |
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"})
|
|
|
29 |
|
30 |
|
31 |
def synthesise(text):
|
32 |
+
inputs = processor(text=text, return_tensors="pt")
|
33 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
34 |
+
return speech.cpu()
|
35 |
|
36 |
|
37 |
def speech_to_speech_translation(audio):
|