Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoProcessor, VisionEncoderDecoderModel
|
3 |
+
import requests
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load processor and model
|
8 |
+
st.title("Image to Text Captioning App")
|
9 |
+
st.write("This app converts an image into a text description using the ViT-GPT2 model.")
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def load_model():
|
13 |
+
processor = AutoProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
14 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
15 |
+
return processor, model
|
16 |
+
|
17 |
+
processor, model = load_model()
|
18 |
+
|
19 |
+
# Upload image
|
20 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
21 |
+
|
22 |
+
if uploaded_file is not None:
|
23 |
+
image = Image.open(uploaded_file).convert("RGB")
|
24 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
25 |
+
|
26 |
+
# Preprocessing image
|
27 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
28 |
+
|
29 |
+
# Generate caption
|
30 |
+
generated_ids = model.generate(pixel_values)
|
31 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
32 |
+
|
33 |
+
st.write("Generated Caption: ")
|
34 |
+
st.success(generated_text)
|