Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torch.nn.functional as F | |
from facenet_pytorch import MTCNN, InceptionResnetV1 | |
import os | |
import numpy as np | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import pickle | |
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
print(f'Running on device: {DEVICE.upper()}') | |
torch.load('resnetinceptionv1_final.pth',map_location='cpu') | |
mtcnn = MTCNN( | |
select_largest=False, | |
post_process=False, | |
device=DEVICE | |
).to(DEVICE).eval() | |
model = InceptionResnetV1( | |
pretrained="vggface2", | |
classify=True, | |
num_classes=1, | |
device=DEVICE | |
) | |
model.load_state_dict(torch.load('resnetinceptionv1_final.pth',map_location='cpu')) | |
model.to(DEVICE) | |
model.eval() | |
print("MTCNN & Classfier models loaded") | |
# Abrimos el fichero pickle de ejemplos de imagenes | |
with open('file_examples.pkl','rb') as file: | |
examples=pickle.load(file) | |
#EXAMPLES_FOLDER = 'examples' | |
#examples_names = os.listdir(EXAMPLES_FOLDER) | |
#examples = [] | |
#for example_name in examples_names: | |
# example_path = os.path.join(EXAMPLES_FOLDER, example_name) | |
# label = example_name.split('_')[0] | |
# example = { | |
# 'path': example_path, | |
# 'label': label | |
# } | |
# examples.append(example) | |
def predict(input_image:Image.Image): | |
"""Predict the label of the input_image""" | |
face = mtcnn(input_image) | |
if face is None: | |
raise Exception('No face detected') | |
face = face.unsqueeze(0) # add the batch dimension | |
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False) | |
# convert the face into a numpy array to be able to plot it | |
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy() | |
face = face.to(DEVICE) | |
face = face.to(torch.float32) | |
face = face / 255.0 | |
with torch.no_grad(): | |
output = torch.sigmoid(model(face).squeeze(0)) | |
prediction = "real" if output.item() < 0.5 else "fake" | |
real_prediction = 1 - output.item() | |
fake_prediction = output.item() | |
confidences = { | |
'real': real_prediction, | |
'fake': fake_prediction | |
} | |
return confidences, face_image_to_plot | |
for i in range(10): | |
example = examples[8] | |
#example_img = example['path'] | |
example_img='fake_frame_0.jpg' | |
example_label = example['label'] | |
print(f"True label: {example_label}") | |
example_img = Image.open(example_img) | |
confidences, _ = predict(example_img) | |
if confidences['real'] > 0.5: | |
print("Predicted label: real") | |
else: | |
print("Predicted label: fake") | |
print() | |
title='Fake or not Fake? that is the question' | |
description='Modelo de deeplearning para clasificar las imagenes en reales o falsas' | |
article='Proyecto Saturdays.AI DemoDay 11/06/2022' | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.inputs.Image(label="Input Image", type="pil"), | |
outputs=[ | |
gr.outputs.Label(label="Class"), | |
gr.outputs.Image(label="Face") | |
], | |
title=title,description=description, article=article, | |
theme='peach', | |
#examples=[examples[i]["path"] for i in range(8)] # fake examples | |
examples=['fake_frame_0.jpg','fake_frame_1.jpg','fake_frame_2.jpg','fake_frame_3.jpg','real_frame_0.jpg','real_frame_1.jpg','real_frame_2.jpg','real_frame_3.jpg'] | |
).launch() |