Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,99 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
inf=gr.Interface(saludar,inputs='text',outputs='text')
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from facenet_pytorch import MTCNN, InceptionResnetV1
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
|
10 |
+
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
11 |
+
print(f'Running on device: {DEVICE.upper()}')
|
|
|
12 |
|
13 |
+
torch.load('./models/resnetinceptionv1_final.pth',map_location='cpu')
|
14 |
+
|
15 |
+
mtcnn = MTCNN(
|
16 |
+
select_largest=False,
|
17 |
+
post_process=False,
|
18 |
+
device=DEVICE
|
19 |
+
).to(DEVICE).eval()
|
20 |
+
|
21 |
+
model = InceptionResnetV1(
|
22 |
+
pretrained="vggface2",
|
23 |
+
classify=True,
|
24 |
+
num_classes=1,
|
25 |
+
device=DEVICE
|
26 |
+
)
|
27 |
+
model.load_state_dict(torch.load('./models/resnetinceptionv1_final.pth',map_location='cpu'))
|
28 |
+
model.to(DEVICE)
|
29 |
+
model.eval()
|
30 |
+
print("MTCNN & Classfier models loaded")
|
31 |
+
|
32 |
+
|
33 |
+
EXAMPLES_FOLDER = 'examples'
|
34 |
+
examples_names = os.listdir(EXAMPLES_FOLDER)
|
35 |
+
examples = []
|
36 |
+
for example_name in examples_names:
|
37 |
+
example_path = os.path.join(EXAMPLES_FOLDER, example_name)
|
38 |
+
label = example_name.split('_')[0]
|
39 |
+
example = {
|
40 |
+
'path': example_path,
|
41 |
+
'label': label
|
42 |
+
}
|
43 |
+
examples.append(example)
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
def predict(input_image:Image.Image):
|
48 |
+
"""Predict the label of the input_image"""
|
49 |
+
face = mtcnn(input_image)
|
50 |
+
if face is None:
|
51 |
+
raise Exception('No face detected')
|
52 |
+
face = face.unsqueeze(0) # add the batch dimension
|
53 |
+
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
54 |
+
|
55 |
+
# convert the face into a numpy array to be able to plot it
|
56 |
+
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
|
57 |
+
|
58 |
+
face = face.to(DEVICE)
|
59 |
+
face = face.to(torch.float32)
|
60 |
+
face = face / 255.0
|
61 |
+
with torch.no_grad():
|
62 |
+
output = torch.sigmoid(model(face).squeeze(0))
|
63 |
+
prediction = "real" if output.item() < 0.5 else "fake"
|
64 |
+
|
65 |
+
real_prediction = 1 - output.item()
|
66 |
+
fake_prediction = output.item()
|
67 |
+
|
68 |
+
confidences = {
|
69 |
+
'real': real_prediction,
|
70 |
+
'fake': fake_prediction
|
71 |
+
}
|
72 |
+
return confidences, face_image_to_plot
|
73 |
+
|
74 |
+
for i in range(10):
|
75 |
+
example = examples[8]
|
76 |
+
example_img = example['path']
|
77 |
+
example_label = example['label']
|
78 |
+
|
79 |
+
print(f"True label: {example_label}")
|
80 |
+
|
81 |
+
example_img = Image.open(example_img)
|
82 |
+
confidences, _ = predict(example_img)
|
83 |
+
if confidences['real'] > 0.5:
|
84 |
+
print("Predicted label: real")
|
85 |
+
else:
|
86 |
+
print("Predicted label: fake")
|
87 |
+
|
88 |
+
print()
|
89 |
+
|
90 |
+
|
91 |
+
interface = gr.Interface(
|
92 |
+
fn=predict,
|
93 |
+
inputs=gr.inputs.Image(label="Input Image", type="pil"),
|
94 |
+
outputs=[
|
95 |
+
gr.outputs.Label(label="Class"),
|
96 |
+
gr.outputs.Image(label="Face")
|
97 |
+
],
|
98 |
+
examples=[examples[i]["path"] for i in range(8)] # fake examples
|
99 |
+
).launch()
|