gaze-demo / demo.py
vikhyatk's picture
Update demo.py
419d075 verified
raw
history blame
6.65 kB
import spaces
import gradio as gr
import os
import torch
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
from PIL import Image
from transformers import AutoModelForCausalLM
matplotlib.use("Agg") # Use Agg backend for non-interactive plotting
os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True
model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream-next",
trust_remote_code=True,
torch_dtype=torch.float16,
device_map={"": "cuda"},
revision="56a3adeae60809e4269c544cde376feb20637ee0"
)
def visualize_faces_and_gaze(face_boxes, gaze_points=None, image=None, show_plot=True):
"""Visualization function that can handle faces without gaze data"""
# Calculate figure size based on image aspect ratio
if image is not None:
height, width = image.shape[:2]
aspect_ratio = width / height
fig_height = 6 # Base height
fig_width = fig_height * aspect_ratio
else:
width, height = 800, 600
fig_width, fig_height = 10, 8
# Create figure with tight layout
fig = plt.figure(figsize=(fig_width, fig_height))
ax = fig.add_subplot(111)
if image is not None:
ax.imshow(image)
else:
ax.set_facecolor("#1a1a1a")
fig.patch.set_facecolor("#1a1a1a")
colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes)))
for i, (face_box, color) in enumerate(zip(face_boxes, colors)):
hex_color = "#{:02x}{:02x}{:02x}".format(
int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)
)
x, y, width_box, height_box = face_box
face_center_x = x + width_box / 2
face_center_y = y + height_box / 2
# Draw face bounding box
face_rect = plt.Rectangle(
(x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2
)
ax.add_patch(face_rect)
# Draw gaze line if gaze data is available
if gaze_points is not None and i < len(gaze_points) and gaze_points[i] is not None:
gaze_x, gaze_y = gaze_points[i]
points = 50
alphas = np.linspace(0.8, 0, points)
x_points = np.linspace(face_center_x, gaze_x, points)
y_points = np.linspace(face_center_y, gaze_y, points)
for j in range(points - 1):
ax.plot(
[x_points[j], x_points[j + 1]],
[y_points[j], y_points[j + 1]],
color=hex_color,
alpha=alphas[j],
linewidth=4,
)
ax.scatter(gaze_x, gaze_y, color=hex_color, s=100, zorder=5)
ax.scatter(gaze_x, gaze_y, color="white", s=50, zorder=6)
# Set plot limits and remove axes
ax.set_xlim(0, width)
ax.set_ylim(height, 0)
ax.set_aspect("equal")
ax.set_xticks([])
ax.set_yticks([])
# Remove padding around the plot
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
return fig
@spaces.GPU(duration=15)
def process_image(input_image, use_ensemble):
if input_image is None:
return None, ""
try:
# Convert to PIL Image if needed
if isinstance(input_image, np.ndarray):
pil_image = Image.fromarray(input_image)
else:
pil_image = input_image
# Get image encoding
enc_image = model.encode_image(pil_image)
if use_ensemble:
flipped_pil = pil_image.copy().transpose(method=Image.FLIP_LEFT_RIGHT)
flip_enc_image = model.encode_image(flipped_pil)
else:
flip_enc_image = None
# Detect faces
faces = model.detect(enc_image, "face")["objects"]
if not faces:
return None, "No faces detected in the image."
# Process each face
face_boxes = []
gaze_points = []
for face in faces:
# Add face bounding box regardless of gaze detection
face_box = (
face["x_min"] * pil_image.width,
face["y_min"] * pil_image.height,
(face["x_max"] - face["x_min"]) * pil_image.width,
(face["y_max"] - face["y_min"]) * pil_image.height,
)
face_center = (
(face["x_min"] + face["x_max"]) / 2,
(face["y_min"] + face["y_max"]) / 2
)
face_boxes.append(face_box)
# Try to detect gaze
gaze_settings = {
"prioritize_accuracy": use_ensemble,
"flip_enc_img": flip_enc_image
}
gaze = model.detect_gaze(enc_image, face=face, eye=face_center, unstable_settings=gaze_settings)["gaze"]
if gaze is not None:
gaze_point = (
gaze["x"] * pil_image.width,
gaze["y"] * pil_image.height,
)
gaze_points.append(gaze_point)
else:
gaze_points.append(None)
# Create visualization
image_array = np.array(pil_image)
fig = visualize_faces_and_gaze(
face_boxes, gaze_points, image=image_array, show_plot=False
)
faces_with_gaze = sum(1 for gp in gaze_points if gp is not None)
status = f"Found {len(faces)} faces. {len(faces) - faces_with_gaze} gazing out of frame."
return fig, status
except Exception as e:
return None, f"Error processing image: {str(e)}"
with gr.Blocks(title="Moondream Gaze Detection") as app:
gr.Markdown("# πŸŒ” Moondream Gaze Detection")
gr.Markdown("Upload an image to detect faces and visualize their gaze directions.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
use_ensemble = gr.Checkbox(
label="Use Ensemble Mode",
value=False,
info="Ensemble mode combines multiple predictions for higher accuracy."
)
with gr.Column():
output_text = gr.Textbox(label="Status")
output_plot = gr.Plot(label="Visualization")
input_image.change(
fn=process_image, inputs=[input_image, use_ensemble], outputs=[output_plot, output_text]
)
use_ensemble.change(
fn=process_image, inputs=[input_image, use_ensemble], outputs=[output_plot, output_text]
)
gr.Examples(
examples=["demo1.jpg", "demo2.jpg", "demo3.jpg", "demo4.jpg", "demo5.jpg", "demo6.jpg", "demo7.jpg", "demo8.jpg"],
inputs=input_image,
)
if __name__ == "__main__":
app.launch()