vikhyatk commited on
Commit
4d2fd0f
·
verified ·
1 Parent(s): 713f4b2

Create demo.py

Browse files
Files changed (1) hide show
  1. demo.py +173 -0
demo.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ from PIL import Image
6
+ from transformers import AutoModelForCausalLM
7
+ import matplotlib
8
+
9
+ matplotlib.use("Agg") # Use Agg backend for non-interactive plotting
10
+
11
+
12
+ os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True
13
+ model = AutoModelForCausalLM.from_pretrained(
14
+ "vikhyatk/moondream-next",
15
+ trust_remote_code=True,
16
+ torch_dtype=torch.float16,
17
+ device_map={"": "cuda"},
18
+ revision="69420e0c6596863b4f0059e365fadc5cb388e8fd"
19
+ )
20
+
21
+
22
+ def visualize_gaze_multi(face_boxes, gaze_points, image=None, show_plot=True):
23
+ """Visualization function with reduced whitespace"""
24
+ # Calculate figure size based on image aspect ratio
25
+ if image is not None:
26
+ height, width = image.shape[:2]
27
+ aspect_ratio = width / height
28
+ fig_height = 6 # Base height
29
+ fig_width = fig_height * aspect_ratio
30
+ else:
31
+ width, height = 800, 600
32
+ fig_width, fig_height = 10, 8
33
+
34
+ # Create figure with tight layout
35
+ fig = plt.figure(figsize=(fig_width, fig_height))
36
+ ax = fig.add_subplot(111)
37
+
38
+ if image is not None:
39
+ ax.imshow(image)
40
+ else:
41
+ ax.set_facecolor("#1a1a1a")
42
+ fig.patch.set_facecolor("#1a1a1a")
43
+
44
+ colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes)))
45
+
46
+ for face_box, gaze_point, color in zip(face_boxes, gaze_points, colors):
47
+ hex_color = "#{:02x}{:02x}{:02x}".format(
48
+ int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)
49
+ )
50
+
51
+ x, y, width_box, height_box = face_box
52
+ gaze_x, gaze_y = gaze_point
53
+
54
+ face_center_x = x + width_box / 2
55
+ face_center_y = y + height_box / 2
56
+
57
+ face_rect = plt.Rectangle(
58
+ (x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2
59
+ )
60
+ ax.add_patch(face_rect)
61
+
62
+ points = 50
63
+ alphas = np.linspace(0.8, 0, points)
64
+
65
+ x_points = np.linspace(face_center_x, gaze_x, points)
66
+ y_points = np.linspace(face_center_y, gaze_y, points)
67
+
68
+ for i in range(points - 1):
69
+ ax.plot(
70
+ [x_points[i], x_points[i + 1]],
71
+ [y_points[i], y_points[i + 1]],
72
+ color=hex_color,
73
+ alpha=alphas[i],
74
+ linewidth=4,
75
+ )
76
+
77
+ ax.scatter(gaze_x, gaze_y, color=hex_color, s=100, zorder=5)
78
+ ax.scatter(gaze_x, gaze_y, color="white", s=50, zorder=6)
79
+
80
+ # Set plot limits and remove axes
81
+ ax.set_xlim(0, width)
82
+ ax.set_ylim(height, 0)
83
+ ax.set_aspect("equal")
84
+ ax.set_xticks([])
85
+ ax.set_yticks([])
86
+
87
+ # Remove padding around the plot
88
+ plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
89
+
90
+ return fig
91
+
92
+ @spaces.GPU(duration=15)
93
+ def process_image(input_image):
94
+ try:
95
+ # Convert to PIL Image if needed
96
+ if isinstance(input_image, np.ndarray):
97
+ pil_image = Image.fromarray(input_image)
98
+ else:
99
+ pil_image = input_image
100
+
101
+ # Get image encoding
102
+ enc_image = model.encode_image(pil_image)
103
+
104
+ # Detect faces
105
+ faces = model.detect(enc_image, "face")["objects"]
106
+
107
+ if not faces:
108
+ return None, "No faces detected in the image."
109
+
110
+ # Process each face
111
+ face_boxes = []
112
+ gaze_points = []
113
+
114
+ for face in faces:
115
+ face_center = (
116
+ (face["x_min"] + face["x_max"]) / 2,
117
+ (face["y_min"] + face["y_max"]) / 2,
118
+ )
119
+ gaze = model.detect_gaze(enc_image, face_center)
120
+
121
+ if gaze is None:
122
+ continue
123
+
124
+ face_box = (
125
+ face["x_min"] * pil_image.width,
126
+ face["y_min"] * pil_image.height,
127
+ (face["x_max"] - face["x_min"]) * pil_image.width,
128
+ (face["y_max"] - face["y_min"]) * pil_image.height,
129
+ )
130
+
131
+ gaze_point = (
132
+ gaze["x"] * pil_image.width,
133
+ gaze["y"] * pil_image.height,
134
+ )
135
+
136
+ face_boxes.append(face_box)
137
+ gaze_points.append(gaze_point)
138
+
139
+ # Create visualization
140
+ image_array = np.array(pil_image)
141
+ fig = visualize_gaze_multi(
142
+ face_boxes, gaze_points, image=image_array, show_plot=False
143
+ )
144
+
145
+ return fig, f"Detected {len(faces)} faces."
146
+
147
+ except Exception as e:
148
+ return None, f"Error processing image: {str(e)}"
149
+
150
+
151
+ with gr.Blocks(title="Moondream Gaze Detection") as app:
152
+ gr.Markdown("# 🌔 Moondream Gaze Detection")
153
+ gr.Markdown("Upload an image to detect faces and visualize their gaze directions.")
154
+
155
+ with gr.Row():
156
+ with gr.Column():
157
+ input_image = gr.Image(label="Input Image", type="pil")
158
+
159
+ with gr.Column():
160
+ output_text = gr.Textbox(label="Status")
161
+ output_plot = gr.Plot(label="Visualization")
162
+
163
+ input_image.change(
164
+ fn=process_image, inputs=[input_image], outputs=[output_plot, output_text]
165
+ )
166
+
167
+ gr.Examples(
168
+ examples=["gaze_test.jpg", "gaze_test2.jpg", "gaze_test3.jpg"],
169
+ inputs=input_image,
170
+ )
171
+
172
+ if __name__ == "__main__":
173
+ app.launch()