import gradio as gr import torch import matplotlib.pyplot as plt import numpy as np from PIL import Image from transformers import AutoModelForCausalLM import matplotlib matplotlib.use("Agg") # Use Agg backend for non-interactive plotting os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True model = AutoModelForCausalLM.from_pretrained( "vikhyatk/moondream-next", trust_remote_code=True, torch_dtype=torch.float16, device_map={"": "cuda"}, revision="69420e0c6596863b4f0059e365fadc5cb388e8fd" ) def visualize_gaze_multi(face_boxes, gaze_points, image=None, show_plot=True): """Visualization function with reduced whitespace""" # Calculate figure size based on image aspect ratio if image is not None: height, width = image.shape[:2] aspect_ratio = width / height fig_height = 6 # Base height fig_width = fig_height * aspect_ratio else: width, height = 800, 600 fig_width, fig_height = 10, 8 # Create figure with tight layout fig = plt.figure(figsize=(fig_width, fig_height)) ax = fig.add_subplot(111) if image is not None: ax.imshow(image) else: ax.set_facecolor("#1a1a1a") fig.patch.set_facecolor("#1a1a1a") colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes))) for face_box, gaze_point, color in zip(face_boxes, gaze_points, colors): hex_color = "#{:02x}{:02x}{:02x}".format( int(color[0] * 255), int(color[1] * 255), int(color[2] * 255) ) x, y, width_box, height_box = face_box gaze_x, gaze_y = gaze_point face_center_x = x + width_box / 2 face_center_y = y + height_box / 2 face_rect = plt.Rectangle( (x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2 ) ax.add_patch(face_rect) points = 50 alphas = np.linspace(0.8, 0, points) x_points = np.linspace(face_center_x, gaze_x, points) y_points = np.linspace(face_center_y, gaze_y, points) for i in range(points - 1): ax.plot( [x_points[i], x_points[i + 1]], [y_points[i], y_points[i + 1]], color=hex_color, alpha=alphas[i], linewidth=4, ) ax.scatter(gaze_x, gaze_y, color=hex_color, s=100, zorder=5) ax.scatter(gaze_x, gaze_y, color="white", s=50, zorder=6) # Set plot limits and remove axes ax.set_xlim(0, width) ax.set_ylim(height, 0) ax.set_aspect("equal") ax.set_xticks([]) ax.set_yticks([]) # Remove padding around the plot plt.subplots_adjust(left=0, right=1, bottom=0, top=1) return fig @spaces.GPU(duration=15) def process_image(input_image): try: # Convert to PIL Image if needed if isinstance(input_image, np.ndarray): pil_image = Image.fromarray(input_image) else: pil_image = input_image # Get image encoding enc_image = model.encode_image(pil_image) # Detect faces faces = model.detect(enc_image, "face")["objects"] if not faces: return None, "No faces detected in the image." # Process each face face_boxes = [] gaze_points = [] for face in faces: face_center = ( (face["x_min"] + face["x_max"]) / 2, (face["y_min"] + face["y_max"]) / 2, ) gaze = model.detect_gaze(enc_image, face_center) if gaze is None: continue face_box = ( face["x_min"] * pil_image.width, face["y_min"] * pil_image.height, (face["x_max"] - face["x_min"]) * pil_image.width, (face["y_max"] - face["y_min"]) * pil_image.height, ) gaze_point = ( gaze["x"] * pil_image.width, gaze["y"] * pil_image.height, ) face_boxes.append(face_box) gaze_points.append(gaze_point) # Create visualization image_array = np.array(pil_image) fig = visualize_gaze_multi( face_boxes, gaze_points, image=image_array, show_plot=False ) return fig, f"Detected {len(faces)} faces." except Exception as e: return None, f"Error processing image: {str(e)}" with gr.Blocks(title="Moondream Gaze Detection") as app: gr.Markdown("# 🌔 Moondream Gaze Detection") gr.Markdown("Upload an image to detect faces and visualize their gaze directions.") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") with gr.Column(): output_text = gr.Textbox(label="Status") output_plot = gr.Plot(label="Visualization") input_image.change( fn=process_image, inputs=[input_image], outputs=[output_plot, output_text] ) gr.Examples( examples=["gaze_test.jpg", "gaze_test2.jpg", "gaze_test3.jpg"], inputs=input_image, ) if __name__ == "__main__": app.launch()