Seyed Morteza Hosseini commited on
Commit
27d9b6d
1 Parent(s): d498612

Use mms for german

Browse files
Files changed (1) hide show
  1. app.py +28 -15
app.py CHANGED
@@ -1,34 +1,47 @@
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
- from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
 
 
 
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
-
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
 
 
 
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
 
 
 
 
32
  return speech.cpu()
33
 
34
 
@@ -56,7 +69,6 @@ mic_translate = gr.Interface(
56
  title=title,
57
  description=description,
58
  )
59
-
60
  file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
  inputs=gr.Audio(source="upload", type="filepath"),
@@ -70,3 +82,4 @@ with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
  demo.launch()
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
 
4
 
5
+ from transformers import (
6
+ VitsModel,
7
+ VitsTokenizer,
8
+ pipeline
9
+ )
10
 
11
 
12
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
13
 
14
  # load speech translation checkpoint
15
+ asr_pipe = pipeline(
16
+ "automatic-speech-recognition",
17
+ model="openai/whisper-base",
18
+ device=device
19
+ )
 
 
20
 
21
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
22
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
23
 
24
 
25
  def translate(audio):
26
+ outputs = asr_pipe(
27
+ audio,
28
+ max_new_tokens=256,
29
+ generate_kwargs={"task": "transcribe", "language": "de"}
30
+ )
31
  return outputs["text"]
32
 
33
 
34
  def synthesise(text):
35
+ if len(text.strip()) == 0:
36
+ return (16000, np.zeros(0).astype(np.int16))
37
+
38
+ inputs = tokenizer(text, return_tensors="pt")
39
+ input_ids = inputs["input_ids"]
40
+
41
+ with torch.no_grad():
42
+ outputs = model(input_ids)
43
+
44
+ speech = outputs.audio[0]
45
  return speech.cpu()
46
 
47
 
 
69
  title=title,
70
  description=description,
71
  )
 
72
  file_translate = gr.Interface(
73
  fn=speech_to_speech_translation,
74
  inputs=gr.Audio(source="upload", type="filepath"),
 
82
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
83
 
84
  demo.launch()
85
+