Spaces:
Runtime error
Runtime error
Seyed Morteza Hosseini
commited on
Commit
•
27d9b6d
1
Parent(s):
d498612
Use mms for german
Browse files
app.py
CHANGED
@@ -1,34 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
-
asr_pipe = pipeline(
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(
|
|
|
|
|
|
|
|
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return speech.cpu()
|
33 |
|
34 |
|
@@ -56,7 +69,6 @@ mic_translate = gr.Interface(
|
|
56 |
title=title,
|
57 |
description=description,
|
58 |
)
|
59 |
-
|
60 |
file_translate = gr.Interface(
|
61 |
fn=speech_to_speech_translation,
|
62 |
inputs=gr.Audio(source="upload", type="filepath"),
|
@@ -70,3 +82,4 @@ with demo:
|
|
70 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
|
72 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
4 |
|
5 |
+
from transformers import (
|
6 |
+
VitsModel,
|
7 |
+
VitsTokenizer,
|
8 |
+
pipeline
|
9 |
+
)
|
10 |
|
11 |
|
12 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
# load speech translation checkpoint
|
15 |
+
asr_pipe = pipeline(
|
16 |
+
"automatic-speech-recognition",
|
17 |
+
model="openai/whisper-base",
|
18 |
+
device=device
|
19 |
+
)
|
|
|
|
|
20 |
|
21 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
|
22 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
|
23 |
|
24 |
|
25 |
def translate(audio):
|
26 |
+
outputs = asr_pipe(
|
27 |
+
audio,
|
28 |
+
max_new_tokens=256,
|
29 |
+
generate_kwargs={"task": "transcribe", "language": "de"}
|
30 |
+
)
|
31 |
return outputs["text"]
|
32 |
|
33 |
|
34 |
def synthesise(text):
|
35 |
+
if len(text.strip()) == 0:
|
36 |
+
return (16000, np.zeros(0).astype(np.int16))
|
37 |
+
|
38 |
+
inputs = tokenizer(text, return_tensors="pt")
|
39 |
+
input_ids = inputs["input_ids"]
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = model(input_ids)
|
43 |
+
|
44 |
+
speech = outputs.audio[0]
|
45 |
return speech.cpu()
|
46 |
|
47 |
|
|
|
69 |
title=title,
|
70 |
description=description,
|
71 |
)
|
|
|
72 |
file_translate = gr.Interface(
|
73 |
fn=speech_to_speech_translation,
|
74 |
inputs=gr.Audio(source="upload", type="filepath"),
|
|
|
82 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
83 |
|
84 |
demo.launch()
|
85 |
+
|