mostafaamiri commited on
Commit
df5c858
1 Parent(s): b4f40fb

Upload 2 files

Browse files
Files changed (2) hide show
  1. main.py +111 -0
  2. requirements.txt +15 -0
main.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.llms import LlamaCpp
2
+ from langchain.callbacks.manager import CallbackManager
3
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
4
+ import gradio as gr
5
+ import re
6
+ import os
7
+
8
+
9
+ # MODEL_PATH = "persian_llama_7b.Q8_K_M.gguf"
10
+ # TEMPRATURE = 0.3
11
+ # MAX_TOKENS = 800
12
+ # for k,v in os.environ.items():
13
+ # if(k=="MODEL_PATH"):
14
+ # MODEL_PATH = v
15
+ # if(k== "TEMPRATURE"):
16
+ # TEMPRATURE = v
17
+ # if(k == "MAX_TOKENS"):
18
+ # MAX_TOKENS = v
19
+
20
+ # print("model: "+MODEL_PATH)
21
+ # print("temp: "+TEMPRATURE)
22
+ # print("max_tokens: "+MAX_TOKENS)
23
+ n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
24
+ n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
25
+ n_ctx=2048
26
+
27
+ callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
28
+ path = "mostafaamiri/persian-llama-7b-GGUF-Q4/persian_llama_7b.Q8_K_M.gguf"
29
+ # persian_llama_7b.Q4_K_M.gguf
30
+ # persian_llama_7b.Q8_K_M.gguf
31
+ # persian_llama_7b.f32.gguf
32
+ # Make sure the model path is correct for your system!
33
+ llm = LlamaCpp(
34
+ model_path= path,
35
+ n_gpu_layers=n_gpu_layers, n_batch=n_batch,
36
+ callback_manager=callback_manager,
37
+ verbose=True,
38
+ n_ctx=n_ctx,
39
+ temperature=TEMPRATURE,
40
+ max_tokens=MAX_TOKENS,
41
+ top_p=1,
42
+ )
43
+ dal_image = "![AIDAL COMPANY|64x64]()"
44
+
45
+
46
+ def generate_output(text):
47
+ result = ""
48
+ for s in llm.stream(text):
49
+ result += s
50
+ yield result
51
+
52
+
53
+ def clear():
54
+ return "", ""
55
+
56
+ def like_log(input, output):
57
+ with open("like_log.txt", "a") as f:
58
+ f.write("{\"model\": \""+MODEL_PATH+"\",\n\"temprature\": "+TEMPRATURE+",\n\"input\": \""+input+"\",\n\"output\": \""+output+"\"},\n")
59
+
60
+ def dislike_log(input, output):
61
+ with open("dislike_log.txt", "a") as f:
62
+ f.write("{\"model\": \""+MODEL_PATH+"\",\n\"temprature\": "+TEMPRATURE+",\n\"input\": \""+input+"\",\n\"output\": \""+output+"\"},\n")
63
+
64
+
65
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
66
+ gr.Markdown(
67
+ dal_image+
68
+ """
69
+ <br>
70
+ <div dir="rtl">
71
+ <h1>
72
+ مدل هوش مصنوعی دال
73
+ </h1>
74
+ <p dir="rtl">
75
+ تماس با ما با
76
+ <br/>
77
+ info[@]aidal.ir
78
+ </p>
79
+ </div>
80
+ """)
81
+ with gr.Row():
82
+ inputs=gr.Textbox(label="ورودی",placeholder="سوال خود را وارد کنید",rtl=True)
83
+
84
+ with gr.Row():
85
+ submit_btn= gr.Button("ارسال", variant="primary")
86
+ clear_btn = gr.ClearButton(value="پاک کردن", variant="secondary")
87
+ with gr.Row():
88
+ outputs=gr.Textbox(label="خروجی",rtl=True)
89
+ submit_btn.click(fn=generate_output,
90
+ inputs= [inputs],
91
+ outputs= [outputs])
92
+ clear_btn.click(fn=clear, inputs=[], outputs=[inputs, outputs])
93
+ with gr.Row():
94
+ like_btn= gr.Button("👍🏾")
95
+ dislike_btn= gr.Button("👎🏾")
96
+ like_btn.click(fn=like_log,
97
+ inputs= [inputs, outputs],
98
+ outputs=[]
99
+ )
100
+ dislike_btn.click(fn=dislike_log,
101
+ inputs= [inputs, outputs],
102
+ outputs=[]
103
+ )
104
+ # gr_interface = gr.Interface(fn=generate_output,
105
+ # inputs=gr.Textbox(label="ورودی",placeholder="سوال خود را وارد کنید",rtl=True),
106
+ # outputs=gr.Textbox(label="خروجی",rtl=True),
107
+ # live=False,
108
+ # flagging_options=["👍🏾","👎🏾"],
109
+ # concurrency_limit=5)
110
+
111
+ demo.launch(server_name='0.0.0.0',share=True)
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain==0.0.335
2
+ langsmith==0.0.64
3
+ peft==0.7.0
4
+ safetensors==0.3.1
5
+ scikit-learn==1.3.0
6
+ scipy==1.11.1
7
+ sentencepiece==0.1.99
8
+ tokenizers==0.15.0
9
+ torch==2.0.1
10
+ torchaudio==2.0.2
11
+ torchvision==0.15.2
12
+ transformers==4.36.0
13
+ bitsandbytes==0.41.1
14
+ gradio==4.13.0
15
+ llama-cpp-python==0.2.28