Spaces:
Running
Running
File size: 8,894 Bytes
6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 8c7ccf7 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac 6b7b2db 11b8aac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import argparse
import numpy as np
import os
import shutil
import torch
import torch.nn.functional as F
from safetensors.torch import safe_open, save_file
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
def merge_tensors(tensor1: torch.Tensor, tensor2: torch.Tensor, p: float) -> torch.Tensor:
"""
Merge two tensors using dropout and scaling.
Args:
tensor1 (torch.Tensor): The first tensor.
tensor2 (torch.Tensor): The second tensor.
p (float): Dropout probability.
Returns:
torch.Tensor: The merged tensor.
"""
delta = tensor2 - tensor1
m = torch.from_numpy(np.random.binomial(1, p, delta.shape)).to(tensor1.dtype)
delta_tilde = m * delta
delta_hat = delta_tilde / (1 - p)
return delta_hat
def merge_safetensors(file_path1: str, file_path2: str, p: float, lambda_val: float) -> dict:
"""
Merge two safetensors files.
Args:
file_path1 (str): Path to the first safetensors file.
file_path2 (str): Path to the second safetensors file.
p (float): Dropout probability.
lambda_val (float): Scaling factor.
Returns:
dict: A dictionary of merged tensors.
"""
merged_tensors = {}
with safe_open(file_path1, framework="pt", device="cpu") as f1, safe_open(file_path2, framework="pt", device="cpu") as f2:
keys1 = set(f1.keys())
keys2 = set(f2.keys())
common_keys = keys1.intersection(keys2)
for key in common_keys:
tensor1 = f1.get_tensor(key)
tensor2 = f2.get_tensor(key)
tensor1, tensor2 = resize_tensors(tensor1, tensor2)
merged_tensors[key] = tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)
logging.info(f"Merging {key}")
return merged_tensors
class BinDataHandler:
"""
A handler for binary data files.
"""
def __init__(self, data: dict):
self.data = data
def get_tensor(self, key: str) -> torch.Tensor:
return self.data[key]
def read_tensors(file_path: str, ext: str) -> tuple:
"""
Read tensors from a file.
Args:
file_path (str): Path to the file.
ext (str): File extension.
Returns:
tuple: A tuple containing the file handler and the set of keys.
"""
if ext == ".safetensors" and file_path.endswith(".safetensors"):
f = safe_open(file_path, framework="pt", device="cpu")
return f, set(f.keys())
if ext == ".bin" and file_path.endswith(".bin"):
data = torch.load(file_path, map_location=torch.device('cpu'))
f = BinDataHandler(data)
return f, set(data.keys())
return None, None
def resize_tensors(tensor1: torch.Tensor, tensor2: torch.Tensor) -> tuple:
"""
Resize tensors to ensure they have the same shape.
Args:
tensor1 (torch.Tensor): The first tensor.
tensor2 (torch.Tensor): The second tensor.
Returns:
tuple: A tuple containing the resized tensors.
"""
if len(tensor1.shape) not in [1, 2]:
return tensor1, tensor2
if tensor1.shape[-1] < tensor2.shape[-1]:
padding_size = tensor2.shape[-1] - tensor1.shape[-1]
tensor1 = F.pad(tensor1, (0, padding_size, 0, 0))
elif tensor2.shape[-1] < tensor1.shape[-1]:
padding_size = tensor1.shape[-1] - tensor2.shape[-1]
tensor2 = F.pad(tensor2, (0, padding_size, 0, 0))
if tensor1.shape[0] < tensor2.shape[0]:
padding_size = tensor2.shape[0] - tensor1.shape[0]
tensor1 = F.pad(tensor1, (0, 0, 0, padding_size))
elif tensor2.shape[0] < tensor1.shape[0]:
padding_size = tensor1.shape[0] - tensor2.shape[0]
tensor2 = F.pad(tensor2, (0, 0, 0, padding_size))
return tensor1, tensor2
def merge_folder(tensor_map: dict, directory_path: str, p: float, lambda_val: float) -> dict:
"""
Merge tensors from a directory of model files.
Args:
tensor_map (dict): A dictionary mapping tensor keys to their file paths.
directory_path (str): Path to the directory containing model files.
p (float): Dropout probability.
lambda_val (float): Scaling factor.
Returns:
dict: A dictionary of merged tensors.
"""
keys1 = set(tensor_map.keys())
ext = None
for filename in os.listdir(directory_path):
if filename.endswith(".safetensors"):
ext = ".safetensors"
if filename.endswith(".bin") and ext is None:
ext = ".bin"
if ext is None:
raise FileNotFoundError("Could not find model files")
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
f, keys2 = read_tensors(file_path, ext)
if keys2:
common_keys = keys1.intersection(keys2)
for key in common_keys:
if "block_sparse_moe.gate" in key:
tensor1 = tensor_map[key]['tensor']
tensor2 = f.get_tensor(key)
tensor_map[key]['tensor'] = (tensor1 + tensor2) / 2.0
continue
tensor1 = tensor_map[key]['tensor']
tensor2 = f.get_tensor(key)
tensor1, tensor2 = resize_tensors(tensor1, tensor2)
tensor_map[key]['tensor'] = tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)
return tensor_map
def map_tensors_to_files(directory_path: str) -> dict:
"""
Map tensors to their respective files in a directory.
Args:
directory_path (str): Path to the directory containing model files.
Returns:
dict: A dictionary mapping tensor keys to their file paths.
"""
tensor_map = {}
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
f, keys = read_tensors(file_path, '.safetensors')
if keys:
for key in keys:
tensor = f.get_tensor(key)
tensor_map[key] = {'filename': filename, 'shape': tensor.shape, 'tensor': tensor}
return tensor_map
def copy_nontensor_files(from_path: str, to_path: str):
"""
Copy non-tensor files from one directory to another.
Args:
from_path (str): Path to the source directory.
to_path (str): Path to the destination directory.
"""
for filename in os.listdir(from_path):
file_path = os.path.join(from_path, filename)
if from_path != to_path and not filename.startswith(".") and not filename.startswith("README") and not filename.endswith(".bin") and not filename.endswith(".safetensors") and not filename.endswith(".pt") and not os.path.isdir(file_path):
logging.info(f"Copying {file_path} to {to_path}")
shutil.copyfile(file_path, to_path + '/' + filename)
def save_tensor_map(tensor_map: dict, output_folder: str):
"""
Save the merged tensor map to the output directory.
Args:
tensor_map (dict): A dictionary of merged tensors.
output_folder (str): Path to the output directory.
"""
metadata = {'format': 'pt'}
by_filename = {}
for key, value in tensor_map.items():
filename = value["filename"]
tensor = value["tensor"]
if filename not in by_filename:
by_filename[filename] = {}
by_filename[filename][key] = tensor
for filename in sorted(by_filename.keys()):
output_file = output_folder + '/' + filename
logging.info(f"Saving: {output_file}")
save_file(by_filename[filename], output_file, metadata=metadata)
def main():
"""
Main function to parse command-line arguments and orchestrate the merging process.
"""
parser = argparse.ArgumentParser(description='Merge two safetensor model files.')
parser.add_argument('base_model', type=str, help='The base model safetensor file')
parser.add_argument('second_model', type=str, help='The second model safetensor file')
parser.add_argument('output_model', type=str, help='The output merged model safetensor file')
parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
parser.add_argument('-lambda', dest='lambda_val', type=float, default=1.0, help='Scaling factor for the weight delta')
args = parser.parse_args()
if os.path.isdir(args.base_model):
if not os.path.exists(args.output_model):
os.makedirs(args.output_model)
tensor_map = map_tensors_to_files(args.base_model)
tensor_map = merge_folder(tensor_map, args.second_model, args.p, args.lambda_val)
copy_nontensor_files(args.base_model, args.output_model)
save_tensor_map(tensor_map, args.output_model)
else:
merged = merge_safetensors(args.base_model, args.second_model, args.p, args.lambda_val)
save_file(merged, args.output_model)
if __name__ == '__main__':
main() |