File size: 8,707 Bytes
ab3f092
dbb2714
 
 
 
2e9ca00
dbb2714
2f7a367
 
 
 
dbb2714
 
2f7a367
 
 
dbb2714
 
fbb02ac
dbb2714
 
 
 
 
2f7a367
 
 
 
 
 
 
dbb2714
 
 
 
 
 
 
 
 
 
 
51f75b1
 
 
 
dbb2714
 
 
 
2f7a367
 
 
 
 
 
dbb2714
 
 
2f7a367
 
 
dbb2714
 
 
 
 
 
 
2f7a367
 
 
 
 
 
 
dbb2714
 
 
 
 
2f7a367
 
 
 
 
 
 
 
 
dbb2714
 
 
 
 
 
2f7a367
dbb2714
2f7a367
dbb2714
 
2f7a367
 
 
 
 
 
dbb2714
48a108f
 
 
 
dbb2714
 
 
980a843
2e9ca00
 
 
 
 
 
 
 
 
 
 
 
 
 
ee2156c
 
 
 
2e9ca00
ee2156c
 
 
 
 
 
 
2e9ca00
dbb2714
2f7a367
 
 
 
 
 
 
 
 
dbb2714
 
 
 
 
 
 
 
 
 
 
 
 
 
2f7a367
dbb2714
 
 
 
2f7a367
 
 
 
 
 
 
 
dbb2714
 
 
 
 
 
 
 
2f7a367
dbb2714
 
2f7a367
 
 
dbb2714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f7a367
dbb2714
980a843
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import shutil
import argparse
import requests
from tqdm import tqdm
from huggingface_hub import HfApi, hf_hub_download
from merge import merge_folder, map_tensors_to_files, copy_nontensor_files, save_tensor_map
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)

class RepositoryManager:
    """
    A class to manage HuggingFace repositories.
    """
    base_model_path = os.path.join(os.getcwd(), "base_model")

    def __init__(self, repo_id, token):
        self.repo_id = repo_id
        self.token = token
        self.api = HfApi(token=token) if token else HfApi()

    def download_repo(self, repo_name, path):
        """
        Download a repository from HuggingFace.

        Args:
            repo_name (str): The name of the repository.
            path (str): The path to save the downloaded repository.
        """
        if os.path.isdir(repo_name):
            if not os.path.exists(path):
                os.makedirs(path)
            shutil.copytree(repo_name, path, dirs_exist_ok=True)
        else:
            if not os.path.exists(path):
                os.makedirs(path)

            repo_files = self.api.list_repo_files(repo_name)

            for file_path in tqdm(repo_files, desc=f"Downloading {repo_name}"):
                # Skip README.md and image files
                if file_path == "README.md" or file_path.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.svg')):
                    continue

                file_url = f"https://huggingface.co/{repo_name}/resolve/main/{file_path}"
                hf_hub_download(repo_id=repo_name, filename=file_path, cache_dir=path, local_dir=path)

    def delete_repo(self, path):
        """
        Delete a repository from the local filesystem.

        Args:
            path (str): The path to the repository.
        """
        shutil.rmtree(path, ignore_errors=True)

class ModelMerger:
    """
    A class to merge models and upload them to HuggingFace.
    """
    def __init__(self, repo_id=None, token=None):
        self.repo_id = repo_id
        self.token = token
        self.api = HfApi(token=token) if token else HfApi()
        self.tensor_map = None

    def prepare_base_model(self, base_model_name, base_model_path):
        """
        Prepare the base model by downloading it from HuggingFace.

        Args:
            base_model_name (str): The name of the base model.
            base_model_path (str): The path to save the base model.
        """
        repo_manager = RepositoryManager(self.repo_id, self.token)
        repo_manager.download_repo(base_model_name, base_model_path)
        self.tensor_map = map_tensors_to_files(base_model_path)

    def merge_repo(self, repo_name, repo_path, p, lambda_val):
        """
        Merge the base model with another model from HuggingFace.

        Args:
            repo_name (str): The name of the model to merge.
            repo_path (str): The path to save the model to merge.
            p (float): Dropout probability.
            lambda_val (float): Scaling factor.
        """
        repo_manager = RepositoryManager(self.repo_id, self.token)
        repo_manager.delete_repo(repo_path)
        repo_manager.download_repo(repo_name, repo_path)

        try:
            self.tensor_map = merge_folder(self.tensor_map, repo_path, p, lambda_val)
            logging.info(f"Merged {repo_name}")
        except Exception as e:
            logging.error(f"Error merging {repo_name}: {e}")

    def finalize_merge(self, output_dir):
        """
        Finalize the merge by copying non-tensor files and saving the merged tensor map.

        Args:
            output_dir (str): The path to the output directory.
        """
        base_model_path = os.path.join(os.getcwd(), "base_model")

        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        copy_nontensor_files(base_model_path, output_dir)
        save_tensor_map(self.tensor_map, output_dir)

    def upload_model(self, output_dir, commit_message):
        """
        Upload the merged model to HuggingFace.

        Args:
            output_dir (str): The path to the output directory containing the merged model.
            commit_message (str): The commit message for the upload.
        """
        try:
            # Create a new repository if it doesn't exist
            if not self.api.repo_exists(repo_id=self.repo_id, token=self.token):
                self.api.create_repo(repo_id=self.repo_id, token=self.token, private=True)

            # Upload the folder to the repository
            self.api.upload_folder(
                repo_id=self.repo_id,
                folder_path=output_dir,
                commit_message=commit_message,
                token=self.token
            )
            url = f"https://huggingface.co/{self.repo_id}"
            logging.info(f"Model uploaded successfully to {url}")
            return url
        except Exception as e:
            logging.error(f"Error: Failed to upload to {self.repo_id}.")
            logging.error(e)
            return ""

def get_max_vocab_size(repo_list):
    """
    Get the maximum vocabulary size from a list of repositories.

    Args:
        repo_list (list): A list of repositories.

    Returns:
        tuple: A tuple containing the maximum vocabulary size and the repository with the maximum vocabulary size.
    """
    max_vocab_size = 0
    repo_with_max_vocab = None
    base_url = "https://huggingface.co/{}/raw/main/config.json"

    for repo_name, _, _ in repo_list:
        url = base_url.format(repo_name)
        try:
            response = requests.get(url)
            config = response.json()
            vocab_size = config.get('vocab_size', 0)
            if vocab_size > max_vocab_size:
                max_vocab_size = vocab_size
                repo_with_max_vocab = repo_name
        except requests.RequestException as e:
            logging.error(f"Error fetching vocab size from {repo_name}: {e}")

    return max_vocab_size, repo_with_max_vocab

def download_json_files(repo_name, file_paths, output_dir):
    """
    Download JSON files from a repository.

    Args:
        repo_name (str): The name of the repository.
        file_paths (list): A list of file paths to download.
        output_dir (str): The path to save the downloaded files.
    """
    base_url = f"https://huggingface.co/{repo_name}/raw/main/"
    for file_path in file_paths:
        url = base_url + file_path
        response = requests.get(url)
        if response.status_code == 200:
            with open(os.path.join(output_dir, os.path.basename(file_path)), 'wb') as file:
                file.write(response.content)
        else:
            logging.error(f"Failed to download {file_path} from {repo_name}")

def main():
    """
    Main function to parse command-line arguments and orchestrate the merging and uploading process.
    """
    parser = argparse.ArgumentParser(description="Merge and upload HuggingFace models")
    parser.add_argument('base_model', type=str, help='Base model safetensors file')
    parser.add_argument('model_to_merge', type=str, help='Model to merge (.safetensors or .bin)')
    parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
    parser.add_argument('-lambda', '--lambda_value', type=float, default=3.0, help='Scaling factor (optional)')
    parser.add_argument('--token', type=str, help='HuggingFace token (required for uploading)')
    parser.add_argument('--repo', type=str, help='HuggingFace repo to upload to (required for uploading)')
    parser.add_argument('--commit-message', type=str, default='Upload merged model', help='Commit message for model upload')
    parser.add_argument('-U', '--upload', action='store_true', help='Upload the merged model to HuggingFace Hub')
    args = parser.parse_args()

    base_model_path = os.path.join(os.getcwd(), "base_model")
    model_to_merge_path = os.path.join(os.getcwd(), "model_to_merge")
    output_dir = os.path.join(os.getcwd(), "output")

    model_merger = ModelMerger(args.repo, args.token)
    model_merger.prepare_base_model(args.base_model, base_model_path)

    model_merger.merge_repo(args.model_to_merge, model_to_merge_path, args.p, args.lambda_value)

    model_merger.finalize_merge(output_dir)

    if args.upload:
        if not args.token or not args.repo:
            logging.error("Error: HuggingFace token and repo name are required for uploading.")
        else:
            url = model_merger.upload_model(output_dir, args.commit_message)
            if url:
                logging.info(f"Model uploaded successfully to {url}")

if __name__ == "__main__":
    main()