Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,578 Bytes
1646c30 626f70a 1646c30 626f70a 1646c30 626f70a 1646c30 626f70a 1646c30 626f70a 1646c30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from __future__ import annotations
import os
import gc
from tqdm import tqdm
import wandb
import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader, Dataset, SequentialSampler
from torch.optim.lr_scheduler import LinearLR, SequentialLR
from einops import rearrange
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
from ema_pytorch import EMA
from model import CFM
from model.utils import exists, default
from model.dataset import DynamicBatchSampler, collate_fn
# trainer
class Trainer:
def __init__(
self,
model: CFM,
epochs,
learning_rate,
num_warmup_updates = 20000,
save_per_updates = 1000,
checkpoint_path = None,
batch_size = 32,
batch_size_type: str = "sample",
max_samples = 32,
grad_accumulation_steps = 1,
max_grad_norm = 1.0,
noise_scheduler: str | None = None,
duration_predictor: torch.nn.Module | None = None,
wandb_project = "test_e2-tts",
wandb_run_name = "test_run",
wandb_resume_id: str = None,
last_per_steps = None,
accelerate_kwargs: dict = dict(),
ema_kwargs: dict = dict()
):
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters = True)
self.accelerator = Accelerator(
log_with = "wandb",
kwargs_handlers = [ddp_kwargs],
gradient_accumulation_steps = grad_accumulation_steps,
**accelerate_kwargs
)
if exists(wandb_resume_id):
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name, 'id': wandb_resume_id}}
else:
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name}}
self.accelerator.init_trackers(
project_name = wandb_project,
init_kwargs=init_kwargs,
config={"epochs": epochs,
"learning_rate": learning_rate,
"num_warmup_updates": num_warmup_updates,
"batch_size": batch_size,
"batch_size_type": batch_size_type,
"max_samples": max_samples,
"grad_accumulation_steps": grad_accumulation_steps,
"max_grad_norm": max_grad_norm,
"gpus": self.accelerator.num_processes,
"noise_scheduler": noise_scheduler}
)
self.model = model
if self.is_main:
self.ema_model = EMA(
model,
include_online_model = False,
**ema_kwargs
)
self.ema_model.to(self.accelerator.device)
self.epochs = epochs
self.num_warmup_updates = num_warmup_updates
self.save_per_updates = save_per_updates
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps)
self.checkpoint_path = default(checkpoint_path, 'ckpts/test_e2-tts')
self.batch_size = batch_size
self.batch_size_type = batch_size_type
self.max_samples = max_samples
self.grad_accumulation_steps = grad_accumulation_steps
self.max_grad_norm = max_grad_norm
self.noise_scheduler = noise_scheduler
self.duration_predictor = duration_predictor
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
self.model, self.optimizer = self.accelerator.prepare(
self.model, self.optimizer
)
@property
def is_main(self):
return self.accelerator.is_main_process
def save_checkpoint(self, step, last=False):
self.accelerator.wait_for_everyone()
if self.is_main:
checkpoint = dict(
model_state_dict = self.accelerator.unwrap_model(self.model).state_dict(),
optimizer_state_dict = self.accelerator.unwrap_model(self.optimizer).state_dict(),
ema_model_state_dict = self.ema_model.state_dict(),
scheduler_state_dict = self.scheduler.state_dict(),
step = step
)
if not os.path.exists(self.checkpoint_path):
os.makedirs(self.checkpoint_path)
if last == True:
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
print(f"Saved last checkpoint at step {step}")
else:
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt")
def load_checkpoint(self):
if not exists(self.checkpoint_path) or not os.path.exists(self.checkpoint_path) or not os.listdir(self.checkpoint_path):
return 0
self.accelerator.wait_for_everyone()
if "model_last.pt" in os.listdir(self.checkpoint_path):
latest_checkpoint = "model_last.pt"
else:
latest_checkpoint = sorted([f for f in os.listdir(self.checkpoint_path) if f.endswith('.pt')], key=lambda x: int(''.join(filter(str.isdigit, x))))[-1]
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location="cpu")
if self.is_main:
self.ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
if 'step' in checkpoint:
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict'])
self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint['optimizer_state_dict'])
if self.scheduler:
self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
step = checkpoint['step']
else:
checkpoint['model_state_dict'] = {k.replace("ema_model.", ""): v for k, v in checkpoint['ema_model_state_dict'].items() if k not in ["initted", "step"]}
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict'])
step = 0
del checkpoint; gc.collect()
return step
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
if exists(resumable_with_seed):
generator = torch.Generator()
generator.manual_seed(resumable_with_seed)
else:
generator = None
if self.batch_size_type == "sample":
train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True,
batch_size=self.batch_size, shuffle=True, generator=generator)
elif self.batch_size_type == "frame":
self.accelerator.even_batches = False
sampler = SequentialSampler(train_dataset)
batch_sampler = DynamicBatchSampler(sampler, self.batch_size, max_samples=self.max_samples, random_seed=resumable_with_seed, drop_last=False)
train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True,
batch_sampler=batch_sampler)
else:
raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}")
# accelerator.prepare() dispatches batches to devices;
# which means the length of dataloader calculated before, should consider the number of devices
warmup_steps = self.num_warmup_updates * self.accelerator.num_processes # consider a fixed warmup steps while using accelerate multi-gpu ddp
# otherwise by default with split_batches=False, warmup steps change with num_processes
total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps
decay_steps = total_steps - warmup_steps
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps)
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps)
self.scheduler = SequentialLR(self.optimizer,
schedulers=[warmup_scheduler, decay_scheduler],
milestones=[warmup_steps])
train_dataloader, self.scheduler = self.accelerator.prepare(train_dataloader, self.scheduler) # actual steps = 1 gpu steps / gpus
start_step = self.load_checkpoint()
global_step = start_step
if exists(resumable_with_seed):
orig_epoch_step = len(train_dataloader)
skipped_epoch = int(start_step // orig_epoch_step)
skipped_batch = start_step % orig_epoch_step
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
else:
skipped_epoch = 0
for epoch in range(skipped_epoch, self.epochs):
self.model.train()
if exists(resumable_with_seed) and epoch == skipped_epoch:
progress_bar = tqdm(skipped_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process,
initial=skipped_batch, total=orig_epoch_step)
else:
progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process)
for batch in progress_bar:
with self.accelerator.accumulate(self.model):
text_inputs = batch['text']
mel_spec = rearrange(batch['mel'], 'b d n -> b n d')
mel_lengths = batch["mel_lengths"]
# TODO. add duration predictor training
if self.duration_predictor is not None and self.accelerator.is_local_main_process:
dur_loss = self.duration_predictor(mel_spec, lens=batch.get('durations'))
self.accelerator.log({"duration loss": dur_loss.item()}, step=global_step)
loss, cond, pred = self.model(mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler)
self.accelerator.backward(loss)
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
if self.is_main:
self.ema_model.update()
global_step += 1
if self.accelerator.is_local_main_process:
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
self.save_checkpoint(global_step)
if global_step % self.last_per_steps == 0:
self.save_checkpoint(global_step, last=True)
self.accelerator.end_training()
|