Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,533 Bytes
a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 0ac3155 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 0ac3155 dd217c7 a674527 dd217c7 a674527 d9c8497 a674527 dd217c7 0ac3155 1d03890 0ac3155 dd217c7 8474faf a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 0ac3155 a674527 8474faf dd217c7 364456d dd217c7 4064aae dd217c7 1d03890 dd217c7 9eac142 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 dd217c7 a674527 d9c8497 dd217c7 a674527 dd217c7 8474faf dd217c7 a674527 8474faf a674527 dd217c7 a674527 dd217c7 8474faf dd217c7 8474faf a674527 d9c8497 a674527 8474faf a674527 0ac3155 9eac142 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import argparse
import codecs
import re
import tempfile
from pathlib import Path
import numpy as np
import soundfile as sf
import tomli
import torch
import torchaudio
import tqdm
from cached_path import cached_path
from pydub import AudioSegment, silence
from transformers import pipeline
from vocos import Vocos
from model import CFM, DiT, MMDiT, UNetT
from model.utils import (convert_char_to_pinyin, get_tokenizer,
load_checkpoint, save_spectrogram)
parser = argparse.ArgumentParser(
prog="python3 inference-cli.py",
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
"-c",
"--config",
help="Configuration file. Default=cli-config.toml",
default="inference-cli.toml",
)
parser.add_argument(
"-m",
"--model",
help="F5-TTS | E2-TTS",
)
parser.add_argument(
"-p",
"--ckpt_file",
help="The Checkpoint .pt",
)
parser.add_argument(
"-v",
"--vocab_file",
help="The vocab .txt",
)
parser.add_argument(
"-r",
"--ref_audio",
type=str,
help="Reference audio file < 15 seconds."
)
parser.add_argument(
"-s",
"--ref_text",
type=str,
default="666",
help="Subtitle for the reference audio."
)
parser.add_argument(
"-t",
"--gen_text",
type=str,
help="Text to generate.",
)
parser.add_argument(
"-f",
"--gen_file",
type=str,
help="File with text to generate. Ignores --text",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
help="Path to output folder..",
)
parser.add_argument(
"--remove_silence",
help="Remove silence.",
)
parser.add_argument(
"--load_vocoder_from_local",
action="store_true",
help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
)
args = parser.parse_args()
config = tomli.load(open(args.config, "rb"))
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
gen_text = args.gen_text if args.gen_text else config["gen_text"]
gen_file = args.gen_file if args.gen_file else config["gen_file"]
if gen_file:
gen_text = codecs.open(gen_file, "r", "utf-8").read()
output_dir = args.output_dir if args.output_dir else config["output_dir"]
model = args.model if args.model else config["model"]
ckpt_file = args.ckpt_file if args.ckpt_file else ""
vocab_file = args.vocab_file if args.vocab_file else ""
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
wave_path = Path(output_dir)/"out.wav"
spectrogram_path = Path(output_dir)/"out.png"
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
if args.load_vocoder_from_local:
print(f"Load vocos from local path {vocos_local_path}")
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
vocos.load_state_dict(state_dict)
vocos.eval()
else:
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
print(f"Using {device} device")
# --------------------- Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32 # 16, 32
cfg_strength = 2.0
ode_method = "euler"
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27 # None or float (duration in seconds)
fix_duration = None
def load_model(model_cls, model_cfg, ckpt_path,file_vocab):
if file_vocab=="":
file_vocab="Emilia_ZH_EN"
tokenizer="pinyin"
else:
tokenizer="custom"
print("\nvocab : ", vocab_file,tokenizer)
print("tokenizer : ", tokenizer)
print("model : ", ckpt_path,"\n")
vocab_char_map, vocab_size = get_tokenizer(file_vocab, tokenizer)
model = CFM(
transformer=model_cls(
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
model = load_checkpoint(model, ckpt_path, device, use_ema = True)
return model
# load models
F5TTS_model_cfg = dict(
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
if model == "F5-TTS":
if ckpt_file == "":
repo_name= "F5-TTS"
exp_name = "F5TTS_Base"
ckpt_step= 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
ema_model = load_model(DiT, F5TTS_model_cfg, ckpt_file,vocab_file)
elif model == "E2-TTS":
if ckpt_file == "":
repo_name= "E2-TTS"
exp_name = "E2TTS_Base"
ckpt_step= 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
ema_model = load_model(UNetT, E2TTS_model_cfg, ckpt_file,vocab_file)
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device=device,
)
def chunk_text(text, max_chars=135):
"""
Splits the input text into chunks, each with a maximum number of characters.
Args:
text (str): The text to be split.
max_chars (int): The maximum number of characters per chunk.
Returns:
List[str]: A list of text chunks.
"""
chunks = []
current_chunk = ""
# Split the text into sentences based on punctuation followed by whitespace
sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text)
for sentence in sentences:
if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
#ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
#if not Path(ckpt_path).exists():
#ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
def infer_batch(ref_audio, ref_text, gen_text_batches, model, remove_silence, cross_fade_duration=0.15):
audio, sr = ref_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
generated_waves = []
spectrograms = []
if len(ref_text[-1].encode('utf-8')) == 1:
ref_text = ref_text + " "
for i, gen_text in enumerate(tqdm.tqdm(gen_text_batches)):
# Prepare the text
text_list = [ref_text + gen_text]
final_text_list = convert_char_to_pinyin(text_list)
# Calculate duration
ref_audio_len = audio.shape[-1] // hop_length
ref_text_len = len(ref_text.encode('utf-8'))
gen_text_len = len(gen_text.encode('utf-8'))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# inference
with torch.inference_mode():
generated, _ = ema_model.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated.to(torch.float32)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = generated.permute(0, 2, 1)
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# wav -> numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
spectrograms.append(generated_mel_spec[0].cpu().numpy())
# Combine all generated waves with cross-fading
if cross_fade_duration <= 0:
# Simply concatenate
final_wave = np.concatenate(generated_waves)
else:
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
cross_fade_samples = int(cross_fade_duration * target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
# No overlap possible, concatenate
final_wave = np.concatenate([prev_wave, next_wave])
continue
# Overlapping parts
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
# Fade out and fade in
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
# Cross-faded overlap
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
# Combine
new_wave = np.concatenate([
prev_wave[:-cross_fade_samples],
cross_faded_overlap,
next_wave[cross_fade_samples:]
])
final_wave = new_wave
# Create a combined spectrogram
combined_spectrogram = np.concatenate(spectrograms, axis=1)
return final_wave, combined_spectrogram
def process_voice(ref_audio_orig, ref_text):
print("Converting", ref_audio_orig)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
audio_duration = len(aseg)
if audio_duration > 15000:
print("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
if not ref_text.strip():
print("No reference text provided, transcribing reference audio...")
ref_text = asr_pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe"},
return_timestamps=False,
)["text"].strip()
print("Finished transcription")
else:
print("Using custom reference text...")
return ref_audio, ref_text
def infer(ref_audio, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15):
# Add the functionality to ensure it ends with ". "
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
if ref_text.endswith("."):
ref_text += " "
else:
ref_text += ". "
# Split the input text into batches
audio, sr = torchaudio.load(ref_audio)
max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
for i, gen_text in enumerate(gen_text_batches):
print(f'gen_text {i}', gen_text)
print(f"Generating audio using {model} in {len(gen_text_batches)} batches, loading models...")
return infer_batch((audio, sr), ref_text, gen_text_batches, model, remove_silence, cross_fade_duration)
def process(ref_audio, ref_text, text_gen, model, remove_silence):
main_voice = {"ref_audio":ref_audio, "ref_text":ref_text}
if "voices" not in config:
voices = {"main": main_voice}
else:
voices = config["voices"]
voices["main"] = main_voice
for voice in voices:
voices[voice]['ref_audio'], voices[voice]['ref_text'] = process_voice(voices[voice]['ref_audio'], voices[voice]['ref_text'])
print("Voice:", voice)
print("Ref_audio:", voices[voice]['ref_audio'])
print("Ref_text:", voices[voice]['ref_text'])
generated_audio_segments = []
reg1 = r'(?=\[\w+\])'
chunks = re.split(reg1, text_gen)
reg2 = r'\[(\w+)\]'
for text in chunks:
match = re.match(reg2, text)
if not match or voice not in voices:
voice = "main"
else:
voice = match[1]
text = re.sub(reg2, "", text)
gen_text = text.strip()
ref_audio = voices[voice]['ref_audio']
ref_text = voices[voice]['ref_text']
print(f"Voice: {voice}")
audio, spectragram = infer(ref_audio, ref_text, gen_text, model,remove_silence)
generated_audio_segments.append(audio)
if generated_audio_segments:
final_wave = np.concatenate(generated_audio_segments)
with open(wave_path, "wb") as f:
sf.write(f.name, final_wave, target_sample_rate)
# Remove silence
if remove_silence:
aseg = AudioSegment.from_file(f.name)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
print(f.name)
process(ref_audio, ref_text, gen_text, model, remove_silence)
|