E2-F5-TTS / inference-cli.py
mrfakename's picture
Sync from GitHub repo
d24a68b verified
raw
history blame
5.4 kB
import argparse
import codecs
import re
from pathlib import Path
import numpy as np
import soundfile as sf
import tomli
from cached_path import cached_path
from model import DiT, UNetT
from model.utils_infer import (
load_vocoder,
load_model,
preprocess_ref_audio_text,
infer_process,
remove_silence_for_generated_wav,
)
parser = argparse.ArgumentParser(
prog="python3 inference-cli.py",
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
"-c",
"--config",
help="Configuration file. Default=cli-config.toml",
default="inference-cli.toml",
)
parser.add_argument(
"-m",
"--model",
help="F5-TTS | E2-TTS",
)
parser.add_argument(
"-p",
"--ckpt_file",
help="The Checkpoint .pt",
)
parser.add_argument(
"-v",
"--vocab_file",
help="The vocab .txt",
)
parser.add_argument(
"-r",
"--ref_audio",
type=str,
help="Reference audio file < 15 seconds."
)
parser.add_argument(
"-s",
"--ref_text",
type=str,
default="666",
help="Subtitle for the reference audio."
)
parser.add_argument(
"-t",
"--gen_text",
type=str,
help="Text to generate.",
)
parser.add_argument(
"-f",
"--gen_file",
type=str,
help="File with text to generate. Ignores --text",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
help="Path to output folder..",
)
parser.add_argument(
"--remove_silence",
help="Remove silence.",
)
parser.add_argument(
"--load_vocoder_from_local",
action="store_true",
help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
)
args = parser.parse_args()
config = tomli.load(open(args.config, "rb"))
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
gen_text = args.gen_text if args.gen_text else config["gen_text"]
gen_file = args.gen_file if args.gen_file else config["gen_file"]
if gen_file:
gen_text = codecs.open(gen_file, "r", "utf-8").read()
output_dir = args.output_dir if args.output_dir else config["output_dir"]
model = args.model if args.model else config["model"]
ckpt_file = args.ckpt_file if args.ckpt_file else ""
vocab_file = args.vocab_file if args.vocab_file else ""
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
wave_path = Path(output_dir)/"out.wav"
spectrogram_path = Path(output_dir)/"out.png"
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
vocos = load_vocoder(is_local=args.load_vocoder_from_local, local_path=vocos_local_path)
# load models
if model == "F5-TTS":
model_cls = DiT
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
if ckpt_file == "":
repo_name= "F5-TTS"
exp_name = "F5TTS_Base"
ckpt_step= 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
elif model == "E2-TTS":
model_cls = UNetT
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
if ckpt_file == "":
repo_name= "E2-TTS"
exp_name = "E2TTS_Base"
ckpt_step= 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
print(f"Using {model}...")
ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence):
main_voice = {"ref_audio":ref_audio, "ref_text":ref_text}
if "voices" not in config:
voices = {"main": main_voice}
else:
voices = config["voices"]
voices["main"] = main_voice
for voice in voices:
voices[voice]['ref_audio'], voices[voice]['ref_text'] = preprocess_ref_audio_text(voices[voice]['ref_audio'], voices[voice]['ref_text'])
print("Voice:", voice)
print("Ref_audio:", voices[voice]['ref_audio'])
print("Ref_text:", voices[voice]['ref_text'])
generated_audio_segments = []
reg1 = r'(?=\[\w+\])'
chunks = re.split(reg1, text_gen)
reg2 = r'\[(\w+)\]'
for text in chunks:
match = re.match(reg2, text)
if not match or voice not in voices:
voice = "main"
else:
voice = match[1]
text = re.sub(reg2, "", text)
gen_text = text.strip()
ref_audio = voices[voice]['ref_audio']
ref_text = voices[voice]['ref_text']
print(f"Voice: {voice}")
audio, final_sample_rate, spectragram = infer_process(ref_audio, ref_text, gen_text, model_obj)
generated_audio_segments.append(audio)
if generated_audio_segments:
final_wave = np.concatenate(generated_audio_segments)
with open(wave_path, "wb") as f:
sf.write(f.name, final_wave, final_sample_rate)
# Remove silence
if remove_silence:
remove_silence_for_generated_wav(f.name)
print(f.name)
main_process(ref_audio, ref_text, gen_text, ema_model, remove_silence)