mrfakename commited on
Commit
fededd1
1 Parent(s): b0bca14

Sync from GitHub repo

Browse files

This Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there

.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "src/third_party/BigVGAN"]
2
+ path = src/third_party/BigVGAN
3
+ url = https://github.com/NVIDIA/BigVGAN.git
README_REPO.md CHANGED
@@ -43,8 +43,15 @@ pip install git+https://github.com/SWivid/F5-TTS.git
43
  ```bash
44
  git clone https://github.com/SWivid/F5-TTS.git
45
  cd F5-TTS
 
46
  pip install -e .
47
  ```
 
 
 
 
 
 
48
 
49
  ### 3. Docker usage
50
  ```bash
 
43
  ```bash
44
  git clone https://github.com/SWivid/F5-TTS.git
45
  cd F5-TTS
46
+ # git submodule update --init --recursive # (optional, if need bigvgan)
47
  pip install -e .
48
  ```
49
+ If initialize submodule, you should add the following code at the beginning of `src/third_party/BigVGAN/bigvgan.py`.
50
+ ```python
51
+ import os
52
+ import sys
53
+ sys.path.append(os.path.dirname(os.path.abspath(__file__)))
54
+ ```
55
 
56
  ### 3. Docker usage
57
  ```bash
src/f5_tts/api.py CHANGED
@@ -1,24 +1,24 @@
1
  import random
2
  import sys
3
- import tqdm
4
  from importlib.resources import files
5
 
6
  import soundfile as sf
7
  import torch
 
8
  from cached_path import cached_path
9
 
10
- from f5_tts.model import DiT, UNetT
11
- from f5_tts.model.utils import seed_everything
12
  from f5_tts.infer.utils_infer import (
13
- load_vocoder,
14
- load_model,
15
  infer_process,
 
 
 
16
  remove_silence_for_generated_wav,
17
  save_spectrogram,
18
- preprocess_ref_audio_text,
19
  target_sample_rate,
20
- hop_length,
21
  )
 
 
22
 
23
 
24
  class F5TTS:
@@ -29,6 +29,7 @@ class F5TTS:
29
  vocab_file="",
30
  ode_method="euler",
31
  use_ema=True,
 
32
  local_path=None,
33
  device=None,
34
  ):
@@ -37,6 +38,7 @@ class F5TTS:
37
  self.target_sample_rate = target_sample_rate
38
  self.hop_length = hop_length
39
  self.seed = -1
 
40
 
41
  # Set device
42
  self.device = device or (
@@ -44,16 +46,19 @@ class F5TTS:
44
  )
45
 
46
  # Load models
47
- self.load_vocoder_model(local_path)
48
- self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)
49
 
50
- def load_vocoder_model(self, local_path):
51
- self.vocoder = load_vocoder(local_path is not None, local_path, self.device)
52
 
53
- def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
54
  if model_type == "F5-TTS":
55
  if not ckpt_file:
56
- ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
 
 
 
57
  model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
58
  model_cls = DiT
59
  elif model_type == "E2-TTS":
@@ -64,7 +69,9 @@ class F5TTS:
64
  else:
65
  raise ValueError(f"Unknown model type: {model_type}")
66
 
67
- self.ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file, ode_method, use_ema, self.device)
 
 
68
 
69
  def export_wav(self, wav, file_wave, remove_silence=False):
70
  sf.write(file_wave, wav, self.target_sample_rate)
@@ -107,6 +114,7 @@ class F5TTS:
107
  gen_text,
108
  self.ema_model,
109
  self.vocoder,
 
110
  show_info=show_info,
111
  progress=progress,
112
  target_rms=target_rms,
 
1
  import random
2
  import sys
 
3
  from importlib.resources import files
4
 
5
  import soundfile as sf
6
  import torch
7
+ import tqdm
8
  from cached_path import cached_path
9
 
 
 
10
  from f5_tts.infer.utils_infer import (
11
+ hop_length,
 
12
  infer_process,
13
+ load_model,
14
+ load_vocoder,
15
+ preprocess_ref_audio_text,
16
  remove_silence_for_generated_wav,
17
  save_spectrogram,
 
18
  target_sample_rate,
 
19
  )
20
+ from f5_tts.model import DiT, UNetT
21
+ from f5_tts.model.utils import seed_everything
22
 
23
 
24
  class F5TTS:
 
29
  vocab_file="",
30
  ode_method="euler",
31
  use_ema=True,
32
+ vocoder_name="vocos",
33
  local_path=None,
34
  device=None,
35
  ):
 
38
  self.target_sample_rate = target_sample_rate
39
  self.hop_length = hop_length
40
  self.seed = -1
41
+ self.mel_spec_type = vocoder_name
42
 
43
  # Set device
44
  self.device = device or (
 
46
  )
47
 
48
  # Load models
49
+ self.load_vocoder_model(vocoder_name, local_path)
50
+ self.load_ema_model(model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema)
51
 
52
+ def load_vocoder_model(self, vocoder_name, local_path):
53
+ self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device)
54
 
55
+ def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema):
56
  if model_type == "F5-TTS":
57
  if not ckpt_file:
58
+ if mel_spec_type == "vocos":
59
+ ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
60
+ elif mel_spec_type == "bigvgan":
61
+ ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt"))
62
  model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
63
  model_cls = DiT
64
  elif model_type == "E2-TTS":
 
69
  else:
70
  raise ValueError(f"Unknown model type: {model_type}")
71
 
72
+ self.ema_model = load_model(
73
+ model_cls, model_cfg, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, self.device
74
+ )
75
 
76
  def export_wav(self, wav, file_wave, remove_silence=False):
77
  sf.write(file_wave, wav, self.target_sample_rate)
 
114
  gen_text,
115
  self.ema_model,
116
  self.vocoder,
117
+ self.mel_spec_type,
118
  show_info=show_info,
119
  progress=progress,
120
  target_rms=target_rms,
src/f5_tts/eval/eval_infer_batch.py CHANGED
@@ -1,26 +1,25 @@
1
- import sys
2
  import os
 
3
 
4
  sys.path.append(os.getcwd())
5
 
6
- import time
7
- from tqdm import tqdm
8
  import argparse
 
9
  from importlib.resources import files
10
 
11
  import torch
12
  import torchaudio
13
  from accelerate import Accelerator
14
- from vocos import Vocos
15
 
16
- from f5_tts.model import CFM, UNetT, DiT
17
- from f5_tts.model.utils import get_tokenizer
18
- from f5_tts.infer.utils_infer import load_checkpoint
19
  from f5_tts.eval.utils_eval import (
20
- get_seedtts_testset_metainfo,
21
- get_librispeech_test_clean_metainfo,
22
  get_inference_prompt,
 
 
23
  )
 
 
 
24
 
25
  accelerator = Accelerator()
26
  device = f"cuda:{accelerator.process_index}"
@@ -31,8 +30,11 @@ device = f"cuda:{accelerator.process_index}"
31
  target_sample_rate = 24000
32
  n_mel_channels = 100
33
  hop_length = 256
 
 
34
  target_rms = 0.1
35
 
 
36
  tokenizer = "pinyin"
37
  rel_path = str(files("f5_tts").joinpath("../../"))
38
 
@@ -46,6 +48,7 @@ def main():
46
  parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
47
  parser.add_argument("-n", "--expname", required=True)
48
  parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
 
49
 
50
  parser.add_argument("-nfe", "--nfestep", default=32, type=int)
51
  parser.add_argument("-o", "--odemethod", default="euler")
@@ -60,6 +63,7 @@ def main():
60
  exp_name = args.expname
61
  ckpt_step = args.ckptstep
62
  ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
 
63
 
64
  nfe_step = args.nfestep
65
  ode_method = args.odemethod
@@ -98,7 +102,7 @@ def main():
98
  output_dir = (
99
  f"{rel_path}/"
100
  f"results/{exp_name}_{ckpt_step}/{testset}/"
101
- f"seed{seed}_{ode_method}_nfe{nfe_step}"
102
  f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
103
  f"_cfg{cfg_strength}_speed{speed}"
104
  f"{'_gt-dur' if use_truth_duration else ''}"
@@ -116,6 +120,7 @@ def main():
116
  target_sample_rate=target_sample_rate,
117
  n_mel_channels=n_mel_channels,
118
  hop_length=hop_length,
 
119
  target_rms=target_rms,
120
  use_truth_duration=use_truth_duration,
121
  infer_batch_size=infer_batch_size,
@@ -123,14 +128,11 @@ def main():
123
 
124
  # Vocoder model
125
  local = False
126
- if local:
127
- vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
128
- vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
129
- state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
130
- vocos.load_state_dict(state_dict)
131
- vocos.eval()
132
- else:
133
- vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
134
 
135
  # Tokenizer
136
  vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
@@ -139,9 +141,12 @@ def main():
139
  model = CFM(
140
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
141
  mel_spec_kwargs=dict(
142
- target_sample_rate=target_sample_rate,
143
- n_mel_channels=n_mel_channels,
144
  hop_length=hop_length,
 
 
 
 
145
  ),
146
  odeint_kwargs=dict(
147
  method=ode_method,
@@ -149,7 +154,8 @@ def main():
149
  vocab_char_map=vocab_char_map,
150
  ).to(device)
151
 
152
- model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
 
153
 
154
  if not os.path.exists(output_dir) and accelerator.is_main_process:
155
  os.makedirs(output_dir)
@@ -178,14 +184,18 @@ def main():
178
  no_ref_audio=no_ref_audio,
179
  seed=seed,
180
  )
181
- # Final result
182
- for i, gen in enumerate(generated):
183
- gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
184
- gen_mel_spec = gen.permute(0, 2, 1)
185
- generated_wave = vocos.decode(gen_mel_spec.cpu())
186
- if ref_rms_list[i] < target_rms:
187
- generated_wave = generated_wave * ref_rms_list[i] / target_rms
188
- torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)
 
 
 
 
189
 
190
  accelerator.wait_for_everyone()
191
  if accelerator.is_main_process:
 
 
1
  import os
2
+ import sys
3
 
4
  sys.path.append(os.getcwd())
5
 
 
 
6
  import argparse
7
+ import time
8
  from importlib.resources import files
9
 
10
  import torch
11
  import torchaudio
12
  from accelerate import Accelerator
13
+ from tqdm import tqdm
14
 
 
 
 
15
  from f5_tts.eval.utils_eval import (
 
 
16
  get_inference_prompt,
17
+ get_librispeech_test_clean_metainfo,
18
+ get_seedtts_testset_metainfo,
19
  )
20
+ from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
21
+ from f5_tts.model import CFM, DiT, UNetT
22
+ from f5_tts.model.utils import get_tokenizer
23
 
24
  accelerator = Accelerator()
25
  device = f"cuda:{accelerator.process_index}"
 
30
  target_sample_rate = 24000
31
  n_mel_channels = 100
32
  hop_length = 256
33
+ win_length = 1024
34
+ n_fft = 1024
35
  target_rms = 0.1
36
 
37
+
38
  tokenizer = "pinyin"
39
  rel_path = str(files("f5_tts").joinpath("../../"))
40
 
 
48
  parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
49
  parser.add_argument("-n", "--expname", required=True)
50
  parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
51
+ parser.add_argument("-m", "--mel_spec_type", default="vocos", type=str, choices=["bigvgan", "vocos"])
52
 
53
  parser.add_argument("-nfe", "--nfestep", default=32, type=int)
54
  parser.add_argument("-o", "--odemethod", default="euler")
 
63
  exp_name = args.expname
64
  ckpt_step = args.ckptstep
65
  ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
66
+ mel_spec_type = args.mel_spec_type
67
 
68
  nfe_step = args.nfestep
69
  ode_method = args.odemethod
 
102
  output_dir = (
103
  f"{rel_path}/"
104
  f"results/{exp_name}_{ckpt_step}/{testset}/"
105
+ f"seed{seed}_{ode_method}_nfe{nfe_step}_{mel_spec_type}"
106
  f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
107
  f"_cfg{cfg_strength}_speed{speed}"
108
  f"{'_gt-dur' if use_truth_duration else ''}"
 
120
  target_sample_rate=target_sample_rate,
121
  n_mel_channels=n_mel_channels,
122
  hop_length=hop_length,
123
+ mel_spec_type=mel_spec_type,
124
  target_rms=target_rms,
125
  use_truth_duration=use_truth_duration,
126
  infer_batch_size=infer_batch_size,
 
128
 
129
  # Vocoder model
130
  local = False
131
+ if mel_spec_type == "vocos":
132
+ vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
133
+ elif mel_spec_type == "bigvgan":
134
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
135
+ vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)
 
 
 
136
 
137
  # Tokenizer
138
  vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
 
141
  model = CFM(
142
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
143
  mel_spec_kwargs=dict(
144
+ n_fft=n_fft,
 
145
  hop_length=hop_length,
146
+ win_length=win_length,
147
+ n_mel_channels=n_mel_channels,
148
+ target_sample_rate=target_sample_rate,
149
+ mel_spec_type=mel_spec_type,
150
  ),
151
  odeint_kwargs=dict(
152
  method=ode_method,
 
154
  vocab_char_map=vocab_char_map,
155
  ).to(device)
156
 
157
+ dtype = torch.float32 if mel_spec_type == "bigvgan" else None
158
+ model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
159
 
160
  if not os.path.exists(output_dir) and accelerator.is_main_process:
161
  os.makedirs(output_dir)
 
184
  no_ref_audio=no_ref_audio,
185
  seed=seed,
186
  )
187
+ # Final result
188
+ for i, gen in enumerate(generated):
189
+ gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
190
+ gen_mel_spec = gen.permute(0, 2, 1)
191
+ if mel_spec_type == "vocos":
192
+ generated_wave = vocoder.decode(gen_mel_spec)
193
+ elif mel_spec_type == "bigvgan":
194
+ generated_wave = vocoder(gen_mel_spec)
195
+
196
+ if ref_rms_list[i] < target_rms:
197
+ generated_wave = generated_wave * ref_rms_list[i] / target_rms
198
+ torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave.squeeze(0).cpu(), target_sample_rate)
199
 
200
  accelerator.wait_for_everyone()
201
  if accelerator.is_main_process:
src/f5_tts/eval/utils_eval.py CHANGED
@@ -2,15 +2,15 @@ import math
2
  import os
3
  import random
4
  import string
5
- from tqdm import tqdm
6
 
7
  import torch
8
  import torch.nn.functional as F
9
  import torchaudio
 
10
 
 
11
  from f5_tts.model.modules import MelSpec
12
  from f5_tts.model.utils import convert_char_to_pinyin
13
- from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
14
 
15
 
16
  # seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
@@ -74,8 +74,11 @@ def get_inference_prompt(
74
  tokenizer="pinyin",
75
  polyphone=True,
76
  target_sample_rate=24000,
 
 
77
  n_mel_channels=100,
78
  hop_length=256,
 
79
  target_rms=0.1,
80
  use_truth_duration=False,
81
  infer_batch_size=1,
@@ -94,7 +97,12 @@ def get_inference_prompt(
94
  )
95
 
96
  mel_spectrogram = MelSpec(
97
- target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length
 
 
 
 
 
98
  )
99
 
100
  for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
 
2
  import os
3
  import random
4
  import string
 
5
 
6
  import torch
7
  import torch.nn.functional as F
8
  import torchaudio
9
+ from tqdm import tqdm
10
 
11
+ from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
12
  from f5_tts.model.modules import MelSpec
13
  from f5_tts.model.utils import convert_char_to_pinyin
 
14
 
15
 
16
  # seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
 
74
  tokenizer="pinyin",
75
  polyphone=True,
76
  target_sample_rate=24000,
77
+ n_fft=1024,
78
+ win_length=1024,
79
  n_mel_channels=100,
80
  hop_length=256,
81
+ mel_spec_type="vocos",
82
  target_rms=0.1,
83
  use_truth_duration=False,
84
  infer_batch_size=1,
 
97
  )
98
 
99
  mel_spectrogram = MelSpec(
100
+ n_fft=n_fft,
101
+ hop_length=hop_length,
102
+ win_length=win_length,
103
+ n_mel_channels=n_mel_channels,
104
+ target_sample_rate=target_sample_rate,
105
+ mel_spec_type=mel_spec_type,
106
  )
107
 
108
  for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
src/f5_tts/infer/README.md CHANGED
@@ -56,6 +56,10 @@ f5-tts_infer-cli \
56
  --ref_audio "ref_audio.wav" \
57
  --ref_text "The content, subtitle or transcription of reference audio." \
58
  --gen_text "Some text you want TTS model generate for you."
 
 
 
 
59
  ```
60
 
61
  And a `.toml` file would help with more flexible usage.
 
56
  --ref_audio "ref_audio.wav" \
57
  --ref_text "The content, subtitle or transcription of reference audio." \
58
  --gen_text "Some text you want TTS model generate for you."
59
+
60
+ # Choose Vocoder
61
+ f5-tts_infer-cli --vocoder_name bigvgan --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base_bigvgan/model_1250000.pt>
62
+ f5-tts_infer-cli --vocoder_name vocos --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base/model_1200000.safetensors>
63
  ```
64
 
65
  And a `.toml` file would help with more flexible usage.
src/f5_tts/infer/infer_cli.py CHANGED
@@ -2,23 +2,22 @@ import argparse
2
  import codecs
3
  import os
4
  import re
5
- from pathlib import Path
6
  from importlib.resources import files
 
7
 
8
  import numpy as np
9
  import soundfile as sf
10
  import tomli
11
  from cached_path import cached_path
12
 
13
- from f5_tts.model import DiT, UNetT
14
  from f5_tts.infer.utils_infer import (
15
- load_vocoder,
16
  load_model,
 
17
  preprocess_ref_audio_text,
18
- infer_process,
19
  remove_silence_for_generated_wav,
20
  )
21
-
22
 
23
  parser = argparse.ArgumentParser(
24
  prog="python3 infer-cli.py",
@@ -70,6 +69,7 @@ parser.add_argument(
70
  "--remove_silence",
71
  help="Remove silence.",
72
  )
 
73
  parser.add_argument(
74
  "--load_vocoder_from_local",
75
  action="store_true",
@@ -111,9 +111,13 @@ remove_silence = args.remove_silence if args.remove_silence else config["remove_
111
  speed = args.speed
112
  wave_path = Path(output_dir) / "infer_cli_out.wav"
113
  # spectrogram_path = Path(output_dir) / "infer_cli_out.png"
114
- vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
 
 
 
 
115
 
116
- vocoder = load_vocoder(is_local=args.load_vocoder_from_local, local_path=vocos_local_path)
117
 
118
 
119
  # load models
@@ -121,11 +125,17 @@ if model == "F5-TTS":
121
  model_cls = DiT
122
  model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
123
  if ckpt_file == "":
124
- repo_name = "F5-TTS"
125
- exp_name = "F5TTS_Base"
126
- ckpt_step = 1200000
127
- ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
128
- # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
 
 
 
 
 
 
129
 
130
  elif model == "E2-TTS":
131
  model_cls = UNetT
@@ -136,12 +146,18 @@ elif model == "E2-TTS":
136
  ckpt_step = 1200000
137
  ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
138
  # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
 
 
 
 
 
 
139
 
140
  print(f"Using {model}...")
141
- ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
142
 
143
 
144
- def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence, speed):
145
  main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
146
  if "voices" not in config:
147
  voices = {"main": main_voice}
@@ -178,7 +194,7 @@ def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence, speed
178
  ref_text = voices[voice]["ref_text"]
179
  print(f"Voice: {voice}")
180
  audio, final_sample_rate, spectragram = infer_process(
181
- ref_audio, ref_text, gen_text, model_obj, vocoder, speed=speed
182
  )
183
  generated_audio_segments.append(audio)
184
 
@@ -197,7 +213,7 @@ def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence, speed
197
 
198
 
199
  def main():
200
- main_process(ref_audio, ref_text, gen_text, ema_model, remove_silence, speed)
201
 
202
 
203
  if __name__ == "__main__":
 
2
  import codecs
3
  import os
4
  import re
 
5
  from importlib.resources import files
6
+ from pathlib import Path
7
 
8
  import numpy as np
9
  import soundfile as sf
10
  import tomli
11
  from cached_path import cached_path
12
 
 
13
  from f5_tts.infer.utils_infer import (
14
+ infer_process,
15
  load_model,
16
+ load_vocoder,
17
  preprocess_ref_audio_text,
 
18
  remove_silence_for_generated_wav,
19
  )
20
+ from f5_tts.model import DiT, UNetT
21
 
22
  parser = argparse.ArgumentParser(
23
  prog="python3 infer-cli.py",
 
69
  "--remove_silence",
70
  help="Remove silence.",
71
  )
72
+ parser.add_argument("--vocoder_name", type=str, default="vocos", choices=["vocos", "bigvgan"], help="vocoder name")
73
  parser.add_argument(
74
  "--load_vocoder_from_local",
75
  action="store_true",
 
111
  speed = args.speed
112
  wave_path = Path(output_dir) / "infer_cli_out.wav"
113
  # spectrogram_path = Path(output_dir) / "infer_cli_out.png"
114
+ if args.vocoder_name == "vocos":
115
+ vocoder_local_path = "../checkpoints/vocos-mel-24khz"
116
+ elif args.vocoder_name == "bigvgan":
117
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
118
+ mel_spec_type = args.vocoder_name
119
 
120
+ vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=args.load_vocoder_from_local, local_path=vocoder_local_path)
121
 
122
 
123
  # load models
 
125
  model_cls = DiT
126
  model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
127
  if ckpt_file == "":
128
+ if args.vocoder_name == "vocos":
129
+ repo_name = "F5-TTS"
130
+ exp_name = "F5TTS_Base"
131
+ ckpt_step = 1200000
132
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
133
+ # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
134
+ elif args.vocoder_name == "bigvgan":
135
+ repo_name = "F5-TTS"
136
+ exp_name = "F5TTS_Base_bigvgan"
137
+ ckpt_step = 1250000
138
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
139
 
140
  elif model == "E2-TTS":
141
  model_cls = UNetT
 
146
  ckpt_step = 1200000
147
  ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
148
  # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
149
+ elif args.vocoder_name == "bigvgan": # TODO: need to test
150
+ repo_name = "F5-TTS"
151
+ exp_name = "F5TTS_Base_bigvgan"
152
+ ckpt_step = 1250000
153
+ ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
154
+
155
 
156
  print(f"Using {model}...")
157
+ ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=args.vocoder_name, vocab_file=vocab_file)
158
 
159
 
160
+ def main_process(ref_audio, ref_text, text_gen, model_obj, mel_spec_type, remove_silence, speed):
161
  main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
162
  if "voices" not in config:
163
  voices = {"main": main_voice}
 
194
  ref_text = voices[voice]["ref_text"]
195
  print(f"Voice: {voice}")
196
  audio, final_sample_rate, spectragram = infer_process(
197
+ ref_audio, ref_text, gen_text, model_obj, vocoder, mel_spec_type=mel_spec_type, speed=speed
198
  )
199
  generated_audio_segments.append(audio)
200
 
 
213
 
214
 
215
  def main():
216
+ main_process(ref_audio, ref_text, gen_text, ema_model, mel_spec_type, remove_silence, speed)
217
 
218
 
219
  if __name__ == "__main__":
src/f5_tts/infer/speech_edit.py CHANGED
@@ -3,17 +3,10 @@ import os
3
  import torch
4
  import torch.nn.functional as F
5
  import torchaudio
6
- from vocos import Vocos
7
-
8
- from f5_tts.model import CFM, UNetT, DiT
9
- from f5_tts.model.utils import (
10
- get_tokenizer,
11
- convert_char_to_pinyin,
12
- )
13
- from f5_tts.infer.utils_infer import (
14
- load_checkpoint,
15
- save_spectrogram,
16
- )
17
 
18
  device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
19
 
@@ -23,6 +16,9 @@ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is
23
  target_sample_rate = 24000
24
  n_mel_channels = 100
25
  hop_length = 256
 
 
 
26
  target_rms = 0.1
27
 
28
  tokenizer = "pinyin"
@@ -89,15 +85,11 @@ if not os.path.exists(output_dir):
89
 
90
  # Vocoder model
91
  local = False
92
- if local:
93
- vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
94
- vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
95
- state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
96
- vocos.load_state_dict(state_dict)
97
-
98
- vocos.eval()
99
- else:
100
- vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
101
 
102
  # Tokenizer
103
  vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
@@ -106,9 +98,12 @@ vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
106
  model = CFM(
107
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
108
  mel_spec_kwargs=dict(
109
- target_sample_rate=target_sample_rate,
110
- n_mel_channels=n_mel_channels,
111
  hop_length=hop_length,
 
 
 
 
112
  ),
113
  odeint_kwargs=dict(
114
  method=ode_method,
@@ -116,7 +111,8 @@ model = CFM(
116
  vocab_char_map=vocab_char_map,
117
  ).to(device)
118
 
119
- model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
 
120
 
121
  # Audio
122
  audio, sr = torchaudio.load(audio_to_edit)
@@ -176,16 +172,20 @@ with torch.inference_mode():
176
  seed=seed,
177
  edit_mask=edit_mask,
178
  )
179
- print(f"Generated mel: {generated.shape}")
180
-
181
- # Final result
182
- generated = generated.to(torch.float32)
183
- generated = generated[:, ref_audio_len:, :]
184
- generated_mel_spec = generated.permute(0, 2, 1)
185
- generated_wave = vocos.decode(generated_mel_spec.cpu())
186
- if rms < target_rms:
187
- generated_wave = generated_wave * rms / target_rms
188
-
189
- save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
190
- torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave, target_sample_rate)
191
- print(f"Generated wav: {generated_wave.shape}")
 
 
 
 
 
3
  import torch
4
  import torch.nn.functional as F
5
  import torchaudio
6
+
7
+ from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
8
+ from f5_tts.model import CFM, DiT, UNetT
9
+ from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
 
 
 
 
 
 
 
10
 
11
  device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
12
 
 
16
  target_sample_rate = 24000
17
  n_mel_channels = 100
18
  hop_length = 256
19
+ win_length = 1024
20
+ n_fft = 1024
21
+ mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
22
  target_rms = 0.1
23
 
24
  tokenizer = "pinyin"
 
85
 
86
  # Vocoder model
87
  local = False
88
+ if mel_spec_type == "vocos":
89
+ vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
90
+ elif mel_spec_type == "bigvgan":
91
+ vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
92
+ vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)
 
 
 
 
93
 
94
  # Tokenizer
95
  vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
 
98
  model = CFM(
99
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
100
  mel_spec_kwargs=dict(
101
+ n_fft=n_fft,
 
102
  hop_length=hop_length,
103
+ win_length=win_length,
104
+ n_mel_channels=n_mel_channels,
105
+ target_sample_rate=target_sample_rate,
106
+ mel_spec_type=mel_spec_type,
107
  ),
108
  odeint_kwargs=dict(
109
  method=ode_method,
 
111
  vocab_char_map=vocab_char_map,
112
  ).to(device)
113
 
114
+ dtype = torch.float32 if mel_spec_type == "bigvgan" else None
115
+ model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
116
 
117
  # Audio
118
  audio, sr = torchaudio.load(audio_to_edit)
 
172
  seed=seed,
173
  edit_mask=edit_mask,
174
  )
175
+ print(f"Generated mel: {generated.shape}")
176
+
177
+ # Final result
178
+ generated = generated.to(torch.float32)
179
+ generated = generated[:, ref_audio_len:, :]
180
+ gen_mel_spec = generated.permute(0, 2, 1)
181
+ if mel_spec_type == "vocos":
182
+ generated_wave = vocoder.decode(gen_mel_spec)
183
+ elif mel_spec_type == "bigvgan":
184
+ generated_wave = vocoder(gen_mel_spec)
185
+
186
+ if rms < target_rms:
187
+ generated_wave = generated_wave * rms / target_rms
188
+
189
+ save_spectrogram(gen_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
190
+ torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave.squeeze(0).cpu(), target_sample_rate)
191
+ print(f"Generated wav: {generated_wave.shape}")
src/f5_tts/infer/utils_infer.py CHANGED
@@ -1,5 +1,9 @@
1
  # A unified script for inference process
2
  # Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
 
 
 
 
3
 
4
  import hashlib
5
  import re
@@ -34,6 +38,9 @@ device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is
34
  target_sample_rate = 24000
35
  n_mel_channels = 100
36
  hop_length = 256
 
 
 
37
  target_rms = 0.1
38
  cross_fade_duration = 0.15
39
  ode_method = "euler"
@@ -80,17 +87,31 @@ def chunk_text(text, max_chars=135):
80
 
81
 
82
  # load vocoder
83
- def load_vocoder(is_local=False, local_path="", device=device):
84
- if is_local:
85
- print(f"Load vocos from local path {local_path}")
86
- vocos = Vocos.from_hparams(f"{local_path}/config.yaml")
87
- state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location=device)
88
- vocos.load_state_dict(state_dict)
89
- vocos.eval()
90
- else:
91
- print("Download Vocos from huggingface charactr/vocos-mel-24khz")
92
- vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
93
- return vocos
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
 
96
  # load asr pipeline
@@ -111,9 +132,12 @@ def initialize_asr_pipeline(device=device):
111
  # load model checkpoint for inference
112
 
113
 
114
- def load_checkpoint(model, ckpt_path, device, use_ema=True):
115
- if device == "cuda":
116
- model = model.half()
 
 
 
117
 
118
  ckpt_type = ckpt_path.split(".")[-1]
119
  if ckpt_type == "safetensors":
@@ -131,6 +155,11 @@ def load_checkpoint(model, ckpt_path, device, use_ema=True):
131
  for k, v in checkpoint["ema_model_state_dict"].items()
132
  if k not in ["initted", "step"]
133
  }
 
 
 
 
 
134
  model.load_state_dict(checkpoint["model_state_dict"])
135
  else:
136
  if ckpt_type == "safetensors":
@@ -143,7 +172,16 @@ def load_checkpoint(model, ckpt_path, device, use_ema=True):
143
  # load model for inference
144
 
145
 
146
- def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_method, use_ema=True, device=device):
 
 
 
 
 
 
 
 
 
147
  if vocab_file == "":
148
  vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
149
  tokenizer = "custom"
@@ -156,9 +194,12 @@ def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_me
156
  model = CFM(
157
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
158
  mel_spec_kwargs=dict(
159
- target_sample_rate=target_sample_rate,
160
- n_mel_channels=n_mel_channels,
161
  hop_length=hop_length,
 
 
 
 
162
  ),
163
  odeint_kwargs=dict(
164
  method=ode_method,
@@ -166,7 +207,8 @@ def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_me
166
  vocab_char_map=vocab_char_map,
167
  ).to(device)
168
 
169
- model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
 
170
 
171
  return model
172
 
@@ -261,6 +303,7 @@ def infer_process(
261
  gen_text,
262
  model_obj,
263
  vocoder,
 
264
  show_info=print,
265
  progress=tqdm,
266
  target_rms=target_rms,
@@ -286,6 +329,7 @@ def infer_process(
286
  gen_text_batches,
287
  model_obj,
288
  vocoder,
 
289
  progress=progress,
290
  target_rms=target_rms,
291
  cross_fade_duration=cross_fade_duration,
@@ -307,6 +351,7 @@ def infer_batch_process(
307
  gen_text_batches,
308
  model_obj,
309
  vocoder,
 
310
  progress=tqdm,
311
  target_rms=0.1,
312
  cross_fade_duration=0.15,
@@ -359,18 +404,21 @@ def infer_batch_process(
359
  sway_sampling_coef=sway_sampling_coef,
360
  )
361
 
362
- generated = generated.to(torch.float32)
363
- generated = generated[:, ref_audio_len:, :]
364
- generated_mel_spec = generated.permute(0, 2, 1)
365
- generated_wave = vocoder.decode(generated_mel_spec.cpu())
366
- if rms < target_rms:
367
- generated_wave = generated_wave * rms / target_rms
368
-
369
- # wav -> numpy
370
- generated_wave = generated_wave.squeeze().cpu().numpy()
371
-
372
- generated_waves.append(generated_wave)
373
- spectrograms.append(generated_mel_spec[0].cpu().numpy())
 
 
 
374
 
375
  # Combine all generated waves with cross-fading
376
  if cross_fade_duration <= 0:
 
1
  # A unified script for inference process
2
  # Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
3
+ import os
4
+ import sys
5
+
6
+ sys.path.append(f"../../{os.path.dirname(os.path.abspath(__file__))}/third_party/BigVGAN/")
7
 
8
  import hashlib
9
  import re
 
38
  target_sample_rate = 24000
39
  n_mel_channels = 100
40
  hop_length = 256
41
+ win_length = 1024
42
+ n_fft = 1024
43
+ mel_spec_type = "vocos"
44
  target_rms = 0.1
45
  cross_fade_duration = 0.15
46
  ode_method = "euler"
 
87
 
88
 
89
  # load vocoder
90
+ def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=device):
91
+ if vocoder_name == "vocos":
92
+ if is_local:
93
+ print(f"Load vocos from local path {local_path}")
94
+ vocoder = Vocos.from_hparams(f"{local_path}/config.yaml")
95
+ state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location="cpu")
96
+ vocoder.load_state_dict(state_dict)
97
+ vocoder = vocoder.eval().to(device)
98
+ else:
99
+ print("Download Vocos from huggingface charactr/vocos-mel-24khz")
100
+ vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
101
+ elif vocoder_name == "bigvgan":
102
+ try:
103
+ from third_party.BigVGAN import bigvgan
104
+ except ImportError:
105
+ print("You need to follow the README to init submodule and change the BigVGAN source code.")
106
+ if is_local:
107
+ """download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main"""
108
+ vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
109
+ else:
110
+ vocoder = bigvgan.BigVGAN.from_pretrained("nvidia/bigvgan_v2_24khz_100band_256x", use_cuda_kernel=False)
111
+
112
+ vocoder.remove_weight_norm()
113
+ vocoder = vocoder.eval().to(device)
114
+ return vocoder
115
 
116
 
117
  # load asr pipeline
 
132
  # load model checkpoint for inference
133
 
134
 
135
+ def load_checkpoint(model, ckpt_path, device, dtype=None, use_ema=True):
136
+ if dtype is None:
137
+ dtype = (
138
+ torch.float16 if device == "cuda" and torch.cuda.get_device_properties(device).major >= 6 else torch.float32
139
+ )
140
+ model = model.to(dtype)
141
 
142
  ckpt_type = ckpt_path.split(".")[-1]
143
  if ckpt_type == "safetensors":
 
155
  for k, v in checkpoint["ema_model_state_dict"].items()
156
  if k not in ["initted", "step"]
157
  }
158
+
159
+ for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
160
+ if key in checkpoint["model_state_dict"]:
161
+ del checkpoint["model_state_dict"][key]
162
+
163
  model.load_state_dict(checkpoint["model_state_dict"])
164
  else:
165
  if ckpt_type == "safetensors":
 
172
  # load model for inference
173
 
174
 
175
+ def load_model(
176
+ model_cls,
177
+ model_cfg,
178
+ ckpt_path,
179
+ mel_spec_type=mel_spec_type,
180
+ vocab_file="",
181
+ ode_method=ode_method,
182
+ use_ema=True,
183
+ device=device,
184
+ ):
185
  if vocab_file == "":
186
  vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
187
  tokenizer = "custom"
 
194
  model = CFM(
195
  transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
196
  mel_spec_kwargs=dict(
197
+ n_fft=n_fft,
 
198
  hop_length=hop_length,
199
+ win_length=win_length,
200
+ n_mel_channels=n_mel_channels,
201
+ target_sample_rate=target_sample_rate,
202
+ mel_spec_type=mel_spec_type,
203
  ),
204
  odeint_kwargs=dict(
205
  method=ode_method,
 
207
  vocab_char_map=vocab_char_map,
208
  ).to(device)
209
 
210
+ dtype = torch.float32 if mel_spec_type == "bigvgan" else None
211
+ model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
212
 
213
  return model
214
 
 
303
  gen_text,
304
  model_obj,
305
  vocoder,
306
+ mel_spec_type=mel_spec_type,
307
  show_info=print,
308
  progress=tqdm,
309
  target_rms=target_rms,
 
329
  gen_text_batches,
330
  model_obj,
331
  vocoder,
332
+ mel_spec_type=mel_spec_type,
333
  progress=progress,
334
  target_rms=target_rms,
335
  cross_fade_duration=cross_fade_duration,
 
351
  gen_text_batches,
352
  model_obj,
353
  vocoder,
354
+ mel_spec_type="vocos",
355
  progress=tqdm,
356
  target_rms=0.1,
357
  cross_fade_duration=0.15,
 
404
  sway_sampling_coef=sway_sampling_coef,
405
  )
406
 
407
+ generated = generated.to(torch.float32)
408
+ generated = generated[:, ref_audio_len:, :]
409
+ generated_mel_spec = generated.permute(0, 2, 1)
410
+ if mel_spec_type == "vocos":
411
+ generated_wave = vocoder.decode(generated_mel_spec)
412
+ elif mel_spec_type == "bigvgan":
413
+ generated_wave = vocoder(generated_mel_spec)
414
+ if rms < target_rms:
415
+ generated_wave = generated_wave * rms / target_rms
416
+
417
+ # wav -> numpy
418
+ generated_wave = generated_wave.squeeze().cpu().numpy()
419
+
420
+ generated_waves.append(generated_wave)
421
+ spectrograms.append(generated_mel_spec[0].cpu().numpy())
422
 
423
  # Combine all generated waves with cross-fading
424
  if cross_fade_duration <= 0:
src/f5_tts/model/cfm.py CHANGED
@@ -8,23 +8,23 @@ d - dimension
8
  """
9
 
10
  from __future__ import annotations
11
- from typing import Callable
12
  from random import random
 
13
 
14
  import torch
15
- from torch import nn
16
  import torch.nn.functional as F
 
17
  from torch.nn.utils.rnn import pad_sequence
18
-
19
  from torchdiffeq import odeint
20
 
21
  from f5_tts.model.modules import MelSpec
22
  from f5_tts.model.utils import (
23
  default,
24
  exists,
 
25
  list_str_to_idx,
26
  list_str_to_tensor,
27
- lens_to_mask,
28
  mask_from_frac_lengths,
29
  )
30
 
@@ -98,10 +98,6 @@ class CFM(nn.Module):
98
  edit_mask=None,
99
  ):
100
  self.eval()
101
-
102
- if next(self.parameters()).dtype == torch.float16:
103
- cond = cond.half()
104
-
105
  # raw wave
106
 
107
  if cond.ndim == 2:
@@ -109,6 +105,8 @@ class CFM(nn.Module):
109
  cond = cond.permute(0, 2, 1)
110
  assert cond.shape[-1] == self.num_channels
111
 
 
 
112
  batch, cond_seq_len, device = *cond.shape[:2], cond.device
113
  if not exists(lens):
114
  lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)
 
8
  """
9
 
10
  from __future__ import annotations
11
+
12
  from random import random
13
+ from typing import Callable
14
 
15
  import torch
 
16
  import torch.nn.functional as F
17
+ from torch import nn
18
  from torch.nn.utils.rnn import pad_sequence
 
19
  from torchdiffeq import odeint
20
 
21
  from f5_tts.model.modules import MelSpec
22
  from f5_tts.model.utils import (
23
  default,
24
  exists,
25
+ lens_to_mask,
26
  list_str_to_idx,
27
  list_str_to_tensor,
 
28
  mask_from_frac_lengths,
29
  )
30
 
 
98
  edit_mask=None,
99
  ):
100
  self.eval()
 
 
 
 
101
  # raw wave
102
 
103
  if cond.ndim == 2:
 
105
  cond = cond.permute(0, 2, 1)
106
  assert cond.shape[-1] == self.num_channels
107
 
108
+ cond = cond.to(next(self.parameters()).dtype)
109
+
110
  batch, cond_seq_len, device = *cond.shape[:2], cond.device
111
  if not exists(lens):
112
  lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)
src/f5_tts/model/dataset.py CHANGED
@@ -1,15 +1,15 @@
1
  import json
2
  import random
3
  from importlib.resources import files
4
- from tqdm import tqdm
5
 
6
  import torch
7
  import torch.nn.functional as F
8
  import torchaudio
 
 
9
  from torch import nn
10
  from torch.utils.data import Dataset, Sampler
11
- from datasets import load_from_disk
12
- from datasets import Dataset as Dataset_
13
 
14
  from f5_tts.model.modules import MelSpec
15
  from f5_tts.model.utils import default
@@ -22,12 +22,21 @@ class HFDataset(Dataset):
22
  target_sample_rate=24_000,
23
  n_mel_channels=100,
24
  hop_length=256,
 
 
 
25
  ):
26
  self.data = hf_dataset
27
  self.target_sample_rate = target_sample_rate
28
  self.hop_length = hop_length
 
29
  self.mel_spectrogram = MelSpec(
30
- target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length
 
 
 
 
 
31
  )
32
 
33
  def get_frame_len(self, index):
@@ -79,6 +88,9 @@ class CustomDataset(Dataset):
79
  target_sample_rate=24_000,
80
  hop_length=256,
81
  n_mel_channels=100,
 
 
 
82
  preprocessed_mel=False,
83
  mel_spec_module: nn.Module | None = None,
84
  ):
@@ -86,15 +98,21 @@ class CustomDataset(Dataset):
86
  self.durations = durations
87
  self.target_sample_rate = target_sample_rate
88
  self.hop_length = hop_length
 
 
 
89
  self.preprocessed_mel = preprocessed_mel
90
 
91
  if not preprocessed_mel:
92
  self.mel_spectrogram = default(
93
  mel_spec_module,
94
  MelSpec(
95
- target_sample_rate=target_sample_rate,
96
  hop_length=hop_length,
 
97
  n_mel_channels=n_mel_channels,
 
 
98
  ),
99
  )
100
 
 
1
  import json
2
  import random
3
  from importlib.resources import files
 
4
 
5
  import torch
6
  import torch.nn.functional as F
7
  import torchaudio
8
+ from datasets import Dataset as Dataset_
9
+ from datasets import load_from_disk
10
  from torch import nn
11
  from torch.utils.data import Dataset, Sampler
12
+ from tqdm import tqdm
 
13
 
14
  from f5_tts.model.modules import MelSpec
15
  from f5_tts.model.utils import default
 
22
  target_sample_rate=24_000,
23
  n_mel_channels=100,
24
  hop_length=256,
25
+ n_fft=1024,
26
+ win_length=1024,
27
+ mel_spec_type="vocos",
28
  ):
29
  self.data = hf_dataset
30
  self.target_sample_rate = target_sample_rate
31
  self.hop_length = hop_length
32
+
33
  self.mel_spectrogram = MelSpec(
34
+ n_fft=n_fft,
35
+ hop_length=hop_length,
36
+ win_length=win_length,
37
+ n_mel_channels=n_mel_channels,
38
+ target_sample_rate=target_sample_rate,
39
+ mel_spec_type=mel_spec_type,
40
  )
41
 
42
  def get_frame_len(self, index):
 
88
  target_sample_rate=24_000,
89
  hop_length=256,
90
  n_mel_channels=100,
91
+ n_fft=1024,
92
+ win_length=1024,
93
+ mel_spec_type="vocos",
94
  preprocessed_mel=False,
95
  mel_spec_module: nn.Module | None = None,
96
  ):
 
98
  self.durations = durations
99
  self.target_sample_rate = target_sample_rate
100
  self.hop_length = hop_length
101
+ self.n_fft = n_fft
102
+ self.win_length = win_length
103
+ self.mel_spec_type = mel_spec_type
104
  self.preprocessed_mel = preprocessed_mel
105
 
106
  if not preprocessed_mel:
107
  self.mel_spectrogram = default(
108
  mel_spec_module,
109
  MelSpec(
110
+ n_fft=n_fft,
111
  hop_length=hop_length,
112
+ win_length=win_length,
113
  n_mel_channels=n_mel_channels,
114
+ target_sample_rate=target_sample_rate,
115
+ mel_spec_type=mel_spec_type,
116
  ),
117
  )
118
 
src/f5_tts/model/modules.py CHANGED
@@ -8,61 +8,138 @@ d - dimension
8
  """
9
 
10
  from __future__ import annotations
11
- from typing import Optional
12
  import math
 
13
 
14
  import torch
15
- from torch import nn
16
  import torch.nn.functional as F
17
  import torchaudio
18
-
 
19
  from x_transformers.x_transformers import apply_rotary_pos_emb
20
 
21
 
22
  # raw wav to mel spec
23
 
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  class MelSpec(nn.Module):
26
  def __init__(
27
  self,
28
- filter_length=1024,
29
  hop_length=256,
30
  win_length=1024,
31
  n_mel_channels=100,
32
  target_sample_rate=24_000,
33
- normalize=False,
34
- power=1,
35
- norm=None,
36
- center=True,
37
  ):
38
  super().__init__()
 
 
 
 
 
39
  self.n_mel_channels = n_mel_channels
 
40
 
41
- self.mel_stft = torchaudio.transforms.MelSpectrogram(
42
- sample_rate=target_sample_rate,
43
- n_fft=filter_length,
44
- win_length=win_length,
45
- hop_length=hop_length,
46
- n_mels=n_mel_channels,
47
- power=power,
48
- center=center,
49
- normalized=normalize,
50
- norm=norm,
51
- )
52
 
53
  self.register_buffer("dummy", torch.tensor(0), persistent=False)
54
 
55
- def forward(self, inp):
56
- if len(inp.shape) == 3:
57
- inp = inp.squeeze(1) # 'b 1 nw -> b nw'
58
-
59
- assert len(inp.shape) == 2
60
-
61
- if self.dummy.device != inp.device:
62
- self.to(inp.device)
 
 
 
 
63
 
64
- mel = self.mel_stft(inp)
65
- mel = mel.clamp(min=1e-5).log()
66
  return mel
67
 
68
 
 
8
  """
9
 
10
  from __future__ import annotations
11
+
12
  import math
13
+ from typing import Optional
14
 
15
  import torch
 
16
  import torch.nn.functional as F
17
  import torchaudio
18
+ from librosa.filters import mel as librosa_mel_fn
19
+ from torch import nn
20
  from x_transformers.x_transformers import apply_rotary_pos_emb
21
 
22
 
23
  # raw wav to mel spec
24
 
25
 
26
+ mel_basis_cache = {}
27
+ hann_window_cache = {}
28
+
29
+
30
+ def get_bigvgan_mel_spectrogram(
31
+ waveform,
32
+ n_fft=1024,
33
+ n_mel_channels=100,
34
+ target_sample_rate=24000,
35
+ hop_length=256,
36
+ win_length=1024,
37
+ fmin=0,
38
+ fmax=None,
39
+ center=False,
40
+ ): # Copy from https://github.com/NVIDIA/BigVGAN/tree/main
41
+ device = waveform.device
42
+ key = f"{n_fft}_{n_mel_channels}_{target_sample_rate}_{hop_length}_{win_length}_{fmin}_{fmax}_{device}"
43
+
44
+ if key not in mel_basis_cache:
45
+ mel = librosa_mel_fn(sr=target_sample_rate, n_fft=n_fft, n_mels=n_mel_channels, fmin=fmin, fmax=fmax)
46
+ mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) # TODO: why they need .float()?
47
+ hann_window_cache[key] = torch.hann_window(win_length).to(device)
48
+
49
+ mel_basis = mel_basis_cache[key]
50
+ hann_window = hann_window_cache[key]
51
+
52
+ padding = (n_fft - hop_length) // 2
53
+ waveform = torch.nn.functional.pad(waveform.unsqueeze(1), (padding, padding), mode="reflect").squeeze(1)
54
+
55
+ spec = torch.stft(
56
+ waveform,
57
+ n_fft,
58
+ hop_length=hop_length,
59
+ win_length=win_length,
60
+ window=hann_window,
61
+ center=center,
62
+ pad_mode="reflect",
63
+ normalized=False,
64
+ onesided=True,
65
+ return_complex=True,
66
+ )
67
+ spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
68
+
69
+ mel_spec = torch.matmul(mel_basis, spec)
70
+ mel_spec = torch.log(torch.clamp(mel_spec, min=1e-5))
71
+
72
+ return mel_spec
73
+
74
+
75
+ def get_vocos_mel_spectrogram(
76
+ waveform,
77
+ n_fft=1024,
78
+ n_mel_channels=100,
79
+ target_sample_rate=24000,
80
+ hop_length=256,
81
+ win_length=1024,
82
+ ):
83
+ mel_stft = torchaudio.transforms.MelSpectrogram(
84
+ sample_rate=target_sample_rate,
85
+ n_fft=n_fft,
86
+ win_length=win_length,
87
+ hop_length=hop_length,
88
+ n_mels=n_mel_channels,
89
+ power=1,
90
+ center=True,
91
+ normalized=False,
92
+ norm=None,
93
+ ).to(waveform.device)
94
+ if len(waveform.shape) == 3:
95
+ waveform = waveform.squeeze(1) # 'b 1 nw -> b nw'
96
+
97
+ assert len(waveform.shape) == 2
98
+
99
+ mel = mel_stft(waveform)
100
+ mel = mel.clamp(min=1e-5).log()
101
+ return mel
102
+
103
+
104
  class MelSpec(nn.Module):
105
  def __init__(
106
  self,
107
+ n_fft=1024,
108
  hop_length=256,
109
  win_length=1024,
110
  n_mel_channels=100,
111
  target_sample_rate=24_000,
112
+ mel_spec_type="vocos",
 
 
 
113
  ):
114
  super().__init__()
115
+ assert mel_spec_type in ["vocos", "bigvgan"], print("We only support two extract mel backend: vocos or bigvgan")
116
+
117
+ self.n_fft = n_fft
118
+ self.hop_length = hop_length
119
+ self.win_length = win_length
120
  self.n_mel_channels = n_mel_channels
121
+ self.target_sample_rate = target_sample_rate
122
 
123
+ if mel_spec_type == "vocos":
124
+ self.extractor = get_vocos_mel_spectrogram
125
+ elif mel_spec_type == "bigvgan":
126
+ self.extractor = get_bigvgan_mel_spectrogram
 
 
 
 
 
 
 
127
 
128
  self.register_buffer("dummy", torch.tensor(0), persistent=False)
129
 
130
+ def forward(self, wav):
131
+ if self.dummy.device != wav.device:
132
+ self.to(wav.device)
133
+
134
+ mel = self.extractor(
135
+ waveform=wav,
136
+ n_fft=self.n_fft,
137
+ n_mel_channels=self.n_mel_channels,
138
+ target_sample_rate=self.target_sample_rate,
139
+ hop_length=self.hop_length,
140
+ win_length=self.win_length,
141
+ )
142
 
 
 
143
  return mel
144
 
145
 
src/f5_tts/model/trainer.py CHANGED
@@ -1,25 +1,22 @@
1
  from __future__ import annotations
2
 
3
- import os
4
  import gc
5
- from tqdm import tqdm
6
- import wandb
7
 
8
  import torch
9
  import torchaudio
10
- from torch.optim import AdamW
11
- from torch.utils.data import DataLoader, Dataset, SequentialSampler
12
- from torch.optim.lr_scheduler import LinearLR, SequentialLR
13
-
14
  from accelerate import Accelerator
15
  from accelerate.utils import DistributedDataParallelKwargs
16
-
17
  from ema_pytorch import EMA
 
 
 
 
18
 
19
  from f5_tts.model import CFM
20
- from f5_tts.model.utils import exists, default
21
  from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
22
-
23
 
24
  # trainer
25
 
@@ -49,6 +46,7 @@ class Trainer:
49
  accelerate_kwargs: dict = dict(),
50
  ema_kwargs: dict = dict(),
51
  bnb_optimizer: bool = False,
 
52
  ):
53
  ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
54
 
@@ -110,6 +108,7 @@ class Trainer:
110
  self.max_samples = max_samples
111
  self.grad_accumulation_steps = grad_accumulation_steps
112
  self.max_grad_norm = max_grad_norm
 
113
 
114
  self.noise_scheduler = noise_scheduler
115
 
@@ -188,9 +187,9 @@ class Trainer:
188
 
189
  def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
190
  if self.log_samples:
191
- from f5_tts.infer.utils_infer import load_vocoder, nfe_step, cfg_strength, sway_sampling_coef
192
 
193
- vocoder = load_vocoder()
194
  target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.mel_stft.sample_rate
195
  log_samples_path = f"{self.checkpoint_path}/samples"
196
  os.makedirs(log_samples_path, exist_ok=True)
@@ -315,7 +314,7 @@ class Trainer:
315
  self.save_checkpoint(global_step)
316
 
317
  if self.log_samples and self.accelerator.is_local_main_process:
318
- ref_audio, ref_audio_len = vocoder.decode(batch["mel"][0].unsqueeze(0).cpu()), mel_lengths[0]
319
  torchaudio.save(f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio, target_sample_rate)
320
  with torch.inference_mode():
321
  generated, _ = self.accelerator.unwrap_model(self.model).sample(
 
1
  from __future__ import annotations
2
 
 
3
  import gc
4
+ import os
 
5
 
6
  import torch
7
  import torchaudio
8
+ import wandb
 
 
 
9
  from accelerate import Accelerator
10
  from accelerate.utils import DistributedDataParallelKwargs
 
11
  from ema_pytorch import EMA
12
+ from torch.optim import AdamW
13
+ from torch.optim.lr_scheduler import LinearLR, SequentialLR
14
+ from torch.utils.data import DataLoader, Dataset, SequentialSampler
15
+ from tqdm import tqdm
16
 
17
  from f5_tts.model import CFM
 
18
  from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
19
+ from f5_tts.model.utils import default, exists
20
 
21
  # trainer
22
 
 
46
  accelerate_kwargs: dict = dict(),
47
  ema_kwargs: dict = dict(),
48
  bnb_optimizer: bool = False,
49
+ mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
50
  ):
51
  ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
52
 
 
108
  self.max_samples = max_samples
109
  self.grad_accumulation_steps = grad_accumulation_steps
110
  self.max_grad_norm = max_grad_norm
111
+ self.vocoder_name = mel_spec_type
112
 
113
  self.noise_scheduler = noise_scheduler
114
 
 
187
 
188
  def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
189
  if self.log_samples:
190
+ from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef
191
 
192
+ vocoder = load_vocoder(vocoder_name=self.vocoder_name)
193
  target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.mel_stft.sample_rate
194
  log_samples_path = f"{self.checkpoint_path}/samples"
195
  os.makedirs(log_samples_path, exist_ok=True)
 
314
  self.save_checkpoint(global_step)
315
 
316
  if self.log_samples and self.accelerator.is_local_main_process:
317
+ ref_audio, ref_audio_len = vocoder.decode(batch["mel"][0].unsqueeze(0)), mel_lengths[0]
318
  torchaudio.save(f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio, target_sample_rate)
319
  with torch.inference_mode():
320
  generated, _ = self.accelerator.unwrap_model(self.model).sample(
src/f5_tts/train/train.py CHANGED
@@ -2,16 +2,18 @@
2
 
3
  from importlib.resources import files
4
 
5
- from f5_tts.model import CFM, UNetT, DiT, Trainer
6
- from f5_tts.model.utils import get_tokenizer
7
  from f5_tts.model.dataset import load_dataset
8
-
9
 
10
  # -------------------------- Dataset Settings --------------------------- #
11
 
12
  target_sample_rate = 24000
13
  n_mel_channels = 100
14
  hop_length = 256
 
 
 
15
 
16
  tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
17
  tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
@@ -56,9 +58,12 @@ def main():
56
  vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
57
 
58
  mel_spec_kwargs = dict(
59
- target_sample_rate=target_sample_rate,
60
- n_mel_channels=n_mel_channels,
61
  hop_length=hop_length,
 
 
 
 
62
  )
63
 
64
  model = CFM(
@@ -84,6 +89,7 @@ def main():
84
  wandb_resume_id=wandb_resume_id,
85
  last_per_steps=last_per_steps,
86
  log_samples=True,
 
87
  )
88
 
89
  train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
 
2
 
3
  from importlib.resources import files
4
 
5
+ from f5_tts.model import CFM, DiT, Trainer, UNetT
 
6
  from f5_tts.model.dataset import load_dataset
7
+ from f5_tts.model.utils import get_tokenizer
8
 
9
  # -------------------------- Dataset Settings --------------------------- #
10
 
11
  target_sample_rate = 24000
12
  n_mel_channels = 100
13
  hop_length = 256
14
+ win_length = 1024
15
+ n_fft = 1024
16
+ mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
17
 
18
  tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
19
  tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
 
58
  vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
59
 
60
  mel_spec_kwargs = dict(
61
+ n_fft=n_fft,
 
62
  hop_length=hop_length,
63
+ win_length=win_length,
64
+ n_mel_channels=n_mel_channels,
65
+ target_sample_rate=target_sample_rate,
66
+ mel_spec_type=mel_spec_type,
67
  )
68
 
69
  model = CFM(
 
89
  wandb_resume_id=wandb_resume_id,
90
  last_per_steps=last_per_steps,
91
  log_samples=True,
92
+ mel_spec_type=mel_spec_type,
93
  )
94
 
95
  train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)