import os,sys from transformers import pipeline import gradio as gr import torch import click import torchaudio from glob import glob import librosa import numpy as np from scipy.io import wavfile from tqdm import tqdm import shutil import time import json from datasets import Dataset from model.utils import convert_char_to_pinyin import signal import psutil import platform import subprocess from datasets.arrow_writer import ArrowWriter from datasets import load_dataset, load_from_disk import json training_process = None system = platform.system() python_executable = sys.executable or "python" path_data="data" device = ( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) pipe = None # Load metadata def get_audio_duration(audio_path): """Calculate the duration of an audio file.""" audio, sample_rate = torchaudio.load(audio_path) num_channels = audio.shape[0] return audio.shape[1] / (sample_rate * num_channels) def clear_text(text): """Clean and prepare text by lowering the case and stripping whitespace.""" return text.lower().strip() def get_rms(y,frame_length=2048,hop_length=512,pad_mode="constant",): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py padding = (int(frame_length // 2), int(frame_length // 2)) y = np.pad(y, padding, mode=pad_mode) axis = -1 # put our new within-frame axis at the end for now out_strides = y.strides + tuple([y.strides[axis]]) # Reduce the shape on the framing axis x_shape_trimmed = list(y.shape) x_shape_trimmed[axis] -= frame_length - 1 out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides) if axis < 0: target_axis = axis - 1 else: target_axis = axis + 1 xw = np.moveaxis(xw, -1, target_axis) # Downsample along the target axis slices = [slice(None)] * xw.ndim slices[axis] = slice(0, None, hop_length) x = xw[tuple(slices)] # Calculate power power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True) return np.sqrt(power) class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py def __init__( self, sr: int, threshold: float = -40.0, min_length: int = 2000, min_interval: int = 300, hop_size: int = 20, max_sil_kept: int = 2000, ): if not min_length >= min_interval >= hop_size: raise ValueError( "The following condition must be satisfied: min_length >= min_interval >= hop_size" ) if not max_sil_kept >= hop_size: raise ValueError( "The following condition must be satisfied: max_sil_kept >= hop_size" ) min_interval = sr * min_interval / 1000 self.threshold = 10 ** (threshold / 20.0) self.hop_size = round(sr * hop_size / 1000) self.win_size = min(round(min_interval), 4 * self.hop_size) self.min_length = round(sr * min_length / 1000 / self.hop_size) self.min_interval = round(min_interval / self.hop_size) self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) def _apply_slice(self, waveform, begin, end): if len(waveform.shape) > 1: return waveform[ :, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size) ] else: return waveform[ begin * self.hop_size : min(waveform.shape[0], end * self.hop_size) ] # @timeit def slice(self, waveform): if len(waveform.shape) > 1: samples = waveform.mean(axis=0) else: samples = waveform if samples.shape[0] <= self.min_length: return [waveform] rms_list = get_rms( y=samples, frame_length=self.win_size, hop_length=self.hop_size ).squeeze(0) sil_tags = [] silence_start = None clip_start = 0 for i, rms in enumerate(rms_list): # Keep looping while frame is silent. if rms < self.threshold: # Record start of silent frames. if silence_start is None: silence_start = i continue # Keep looping while frame is not silent and silence start has not been recorded. if silence_start is None: continue # Clear recorded silence start if interval is not enough or clip is too short is_leading_silence = silence_start == 0 and i > self.max_sil_kept need_slice_middle = ( i - silence_start >= self.min_interval and i - clip_start >= self.min_length ) if not is_leading_silence and not need_slice_middle: silence_start = None continue # Need slicing. Record the range of silent frames to be removed. if i - silence_start <= self.max_sil_kept: pos = rms_list[silence_start : i + 1].argmin() + silence_start if silence_start == 0: sil_tags.append((0, pos)) else: sil_tags.append((pos, pos)) clip_start = pos elif i - silence_start <= self.max_sil_kept * 2: pos = rms_list[ i - self.max_sil_kept : silence_start + self.max_sil_kept + 1 ].argmin() pos += i - self.max_sil_kept pos_l = ( rms_list[ silence_start : silence_start + self.max_sil_kept + 1 ].argmin() + silence_start ) pos_r = ( rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept ) if silence_start == 0: sil_tags.append((0, pos_r)) clip_start = pos_r else: sil_tags.append((min(pos_l, pos), max(pos_r, pos))) clip_start = max(pos_r, pos) else: pos_l = ( rms_list[ silence_start : silence_start + self.max_sil_kept + 1 ].argmin() + silence_start ) pos_r = ( rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept ) if silence_start == 0: sil_tags.append((0, pos_r)) else: sil_tags.append((pos_l, pos_r)) clip_start = pos_r silence_start = None # Deal with trailing silence. total_frames = rms_list.shape[0] if ( silence_start is not None and total_frames - silence_start >= self.min_interval ): silence_end = min(total_frames, silence_start + self.max_sil_kept) pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start sil_tags.append((pos, total_frames + 1)) # Apply and return slices. ####音频+起始时间+终止时间 if len(sil_tags) == 0: return [[waveform,0,int(total_frames*self.hop_size)]] else: chunks = [] if sil_tags[0][0] > 0: chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]),0,int(sil_tags[0][0]*self.hop_size)]) for i in range(len(sil_tags) - 1): chunks.append( [self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),int(sil_tags[i][1]*self.hop_size),int(sil_tags[i + 1][0]*self.hop_size)] ) if sil_tags[-1][1] < total_frames: chunks.append( [self._apply_slice(waveform, sil_tags[-1][1], total_frames),int(sil_tags[-1][1]*self.hop_size),int(total_frames*self.hop_size)] ) return chunks #terminal def terminate_process_tree(pid, including_parent=True): try: parent = psutil.Process(pid) except psutil.NoSuchProcess: # Process already terminated return children = parent.children(recursive=True) for child in children: try: os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL except OSError: pass if including_parent: try: os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL except OSError: pass def terminate_process(pid): if system == "Windows": cmd = f"taskkill /t /f /pid {pid}" os.system(cmd) else: terminate_process_tree(pid) def start_training(dataset_name="", exp_name="F5TTS_Base", learning_rate=1e-4, batch_size_per_gpu=400, batch_size_type="frame", max_samples=64, grad_accumulation_steps=1, max_grad_norm=1.0, epochs=11, num_warmup_updates=200, save_per_updates=400, last_per_steps=800, finetune=True, ): global training_process # Check if a training process is already running if training_process is not None: return "Train run already!",gr.update(interactive=False),gr.update(interactive=True) yield "start train",gr.update(interactive=False),gr.update(interactive=False) # Command to run the training script with the specified arguments cmd = f"{python_executable} finetune-cli.py --exp_name {exp_name} " \ f"--learning_rate {learning_rate} " \ f"--batch_size_per_gpu {batch_size_per_gpu} " \ f"--batch_size_type {batch_size_type} " \ f"--max_samples {max_samples} " \ f"--grad_accumulation_steps {grad_accumulation_steps} " \ f"--max_grad_norm {max_grad_norm} " \ f"--epochs {epochs} " \ f"--num_warmup_updates {num_warmup_updates} " \ f"--save_per_updates {save_per_updates} " \ f"--last_per_steps {last_per_steps} " \ f"--dataset_name {dataset_name}" if finetune:cmd += f" --finetune {finetune}" print(cmd) try: # Start the training process training_process = subprocess.Popen(cmd, shell=True) time.sleep(5) yield "check terminal for wandb",gr.update(interactive=False),gr.update(interactive=True) # Wait for the training process to finish training_process.wait() time.sleep(1) if training_process is None: text_info = 'train stop' else: text_info = "train complete !" except Exception as e: # Catch all exceptions # Ensure that we reset the training process variable in case of an error text_info=f"An error occurred: {str(e)}" training_process=None yield text_info,gr.update(interactive=True),gr.update(interactive=False) def stop_training(): global training_process if training_process is None:return f"Train not run !",gr.update(interactive=True),gr.update(interactive=False) terminate_process_tree(training_process.pid) training_process = None return 'train stop',gr.update(interactive=True),gr.update(interactive=False) def create_data_project(name): name+="_pinyin" os.makedirs(os.path.join(path_data,name),exist_ok=True) os.makedirs(os.path.join(path_data,name,"dataset"),exist_ok=True) def transcribe(file_audio,language="english"): global pipe if pipe is None: pipe = pipeline("automatic-speech-recognition",model="openai/whisper-large-v3-turbo", torch_dtype=torch.float16,device=device) text_transcribe = pipe( file_audio, chunk_length_s=30, batch_size=128, generate_kwargs={"task": "transcribe","language": language}, return_timestamps=False, )["text"].strip() return text_transcribe def transcribe_all(name_project,audio_files,language,user=False,progress=gr.Progress()): name_project+="_pinyin" path_project= os.path.join(path_data,name_project) path_dataset = os.path.join(path_project,"dataset") path_project_wavs = os.path.join(path_project,"wavs") file_metadata = os.path.join(path_project,"metadata.csv") if os.path.isdir(path_project_wavs): shutil.rmtree(path_project_wavs) if os.path.isfile(file_metadata): os.remove(file_metadata) os.makedirs(path_project_wavs,exist_ok=True) if user: file_audios = [file for format in ('*.wav', '*.ogg', '*.opus', '*.mp3', '*.flac') for file in glob(os.path.join(path_dataset, format))] else: file_audios = audio_files print([file_audios]) alpha = 0.5 _max = 1.0 slicer = Slicer(24000) num = 0 data="" for file_audio in progress.tqdm(file_audios, desc="transcribe files",total=len((file_audios))): audio, _ = librosa.load(file_audio, sr=24000, mono=True) list_slicer=slicer.slice(audio) for chunk, start, end in progress.tqdm(list_slicer,total=len(list_slicer), desc="slicer files"): name_segment = os.path.join(f"segment_{num}") file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav") tmp_max = np.abs(chunk).max() if(tmp_max>1):chunk/=tmp_max chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk wavfile.write(file_segment,24000, (chunk * 32767).astype(np.int16)) text=transcribe(file_segment,language) text = text.lower().strip().replace('"',"") data+= f"{name_segment}|{text}\n" num+=1 with open(file_metadata,"w",encoding="utf-8") as f: f.write(data) return f"transcribe complete samples : {num} in path {path_project_wavs}" def format_seconds_to_hms(seconds): hours = int(seconds / 3600) minutes = int((seconds % 3600) / 60) seconds = seconds % 60 return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds)) def create_metadata(name_project,progress=gr.Progress()): name_project+="_pinyin" path_project= os.path.join(path_data,name_project) path_project_wavs = os.path.join(path_project,"wavs") file_metadata = os.path.join(path_project,"metadata.csv") file_raw = os.path.join(path_project,"raw.arrow") file_duration = os.path.join(path_project,"duration.json") file_vocab = os.path.join(path_project,"vocab.txt") with open(file_metadata,"r",encoding="utf-8") as f: data=f.read() audio_path_list=[] text_list=[] duration_list=[] count=data.split("\n") lenght=0 result=[] for line in progress.tqdm(data.split("\n"),total=count): sp_line=line.split("|") if len(sp_line)!=2:continue name_audio,text = sp_line[:2] file_audio = os.path.join(path_project_wavs, name_audio + ".wav") duraction = get_audio_duration(file_audio) if duraction<2 and duraction>15:continue if len(text)<4:continue text = clear_text(text) text = convert_char_to_pinyin([text], polyphone = True)[0] audio_path_list.append(file_audio) duration_list.append(duraction) text_list.append(text) result.append({"audio_path": file_audio, "text": text, "duration": duraction}) lenght+=duraction min_second = round(min(duration_list),2) max_second = round(max(duration_list),2) with ArrowWriter(path=file_raw, writer_batch_size=1) as writer: for line in progress.tqdm(result,total=len(result), desc=f"prepare data"): writer.write(line) with open(file_duration, 'w', encoding='utf-8') as f: json.dump({"duration": duration_list}, f, ensure_ascii=False) file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt" shutil.copy2(file_vocab_finetune, file_vocab) return f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\n" def check_user(value): return gr.update(visible=not value),gr.update(visible=value) def calculate_train(name_project,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,finetune): name_project+="_pinyin" path_project= os.path.join(path_data,name_project) file_duraction = os.path.join(path_project,"duration.json") with open(file_duraction, 'r') as file: data = json.load(file) duration_list = data['duration'] samples = len(duration_list) gpu_properties = torch.cuda.get_device_properties(0) total_memory = gpu_properties.total_memory / (1024 ** 3) if batch_size_type=="frame": batch = int(total_memory * 0.5) batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch) batch_size_per_gpu = int(36800 / batch ) else: batch_size_per_gpu = int(total_memory / 8) batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu) batch = batch_size_per_gpu if batch_size_per_gpu<=0:batch_size_per_gpu=1 if samples<64: max_samples = int(samples * 0.25) num_warmup_updates = int(samples * 0.10) save_per_updates = int(samples * 0.25) last_per_steps =int(save_per_updates * 5) max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples) num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates) save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates) last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps) if finetune:learning_rate=1e-4 else:learning_rate=7.5e-5 return batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,samples,learning_rate def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str) -> None: try: checkpoint = torch.load(checkpoint_path) print("Original Checkpoint Keys:", checkpoint.keys()) ema_model_state_dict = checkpoint.get('ema_model_state_dict', None) if ema_model_state_dict is not None: new_checkpoint = {'ema_model_state_dict': ema_model_state_dict} torch.save(new_checkpoint, new_checkpoint_path) print(f"New checkpoint saved at: {new_checkpoint_path}") else: print("No 'ema_model_state_dict' found in the checkpoint.") except Exception as e: print(f"An error occurred: {e}") def vocab_check(project_name): name_project = project_name + "_pinyin" path_project = os.path.join(path_data, name_project) file_metadata = os.path.join(path_project, "metadata.csv") file_vocab="data/Emilia_ZH_EN_pinyin/vocab.txt" with open(file_vocab,"r",encoding="utf-8") as f: data=f.read() vocab = data.split("\n") with open(file_metadata,"r",encoding="utf-8") as f: data=f.read() miss_symbols=[] miss_symbols_keep={} for item in data.split("\n"): sp=item.split("|") if len(sp)!=2:continue text=sp[1].lower().strip() for t in text: if (t in vocab)==False and (t in miss_symbols_keep)==False: miss_symbols.append(t) miss_symbols_keep[t]=t if miss_symbols==[]:info ="You can train using your language !" else:info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols) return info with gr.Blocks() as app: with gr.Row(): project_name=gr.Textbox(label="project name",value="my_speak") bt_create=gr.Button("create new project") bt_create.click(fn=create_data_project,inputs=[project_name]) with gr.Tabs(): with gr.TabItem("transcribe Data"): ch_manual = gr.Checkbox(label="user",value=False) mark_info_transcribe=gr.Markdown( """```plaintext Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory. my_speak/ │ └── dataset/ ├── audio1.wav └── audio2.wav ... ```""",visible=False) audio_speaker = gr.File(label="voice",type="filepath",file_count="multiple") txt_lang = gr.Text(label="Language",value="english") bt_transcribe=bt_create=gr.Button("transcribe") txt_info_transcribe=gr.Text(label="info",value="") bt_transcribe.click(fn=transcribe_all,inputs=[project_name,audio_speaker,txt_lang,ch_manual],outputs=[txt_info_transcribe]) ch_manual.change(fn=check_user,inputs=[ch_manual],outputs=[audio_speaker,mark_info_transcribe]) with gr.TabItem("prepare Data"): gr.Markdown( """```plaintext place all your wavs folder and your metadata.csv file in {your name project} my_speak/ │ ├── wavs/ │ ├── audio1.wav │ └── audio2.wav | ... │ └── metadata.csv file format metadata.csv audio1|text1 audio2|text1 ... ```""") bt_prepare=bt_create=gr.Button("prepare") txt_info_prepare=gr.Text(label="info",value="") bt_prepare.click(fn=create_metadata,inputs=[project_name],outputs=[txt_info_prepare]) with gr.TabItem("train Data"): with gr.Row(): bt_calculate=bt_create=gr.Button("Auto Settings") ch_finetune=bt_create=gr.Checkbox(label="finetune",value=True) lb_samples = gr.Label(label="samples") batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame") with gr.Row(): exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base") learning_rate = gr.Number(label="Learning Rate", value=1e-4, step=1e-4) with gr.Row(): batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000) max_samples = gr.Number(label="Max Samples", value=16) with gr.Row(): grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1) max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0) with gr.Row(): epochs = gr.Number(label="Epochs", value=10) num_warmup_updates = gr.Number(label="Warmup Updates", value=5) with gr.Row(): save_per_updates = gr.Number(label="Save per Updates", value=10) last_per_steps = gr.Number(label="Last per Steps", value=50) with gr.Row(): start_button = gr.Button("Start Training") stop_button = gr.Button("Stop Training",interactive=False) txt_info_train=gr.Text(label="info",value="") start_button.click(fn=start_training,inputs=[project_name,exp_name,learning_rate,batch_size_per_gpu,batch_size_type,max_samples,grad_accumulation_steps,max_grad_norm,epochs,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[txt_info_train,start_button,stop_button]) stop_button.click(fn=stop_training,outputs=[txt_info_train,start_button,stop_button]) bt_calculate.click(fn=calculate_train,inputs=[project_name,batch_size_type,max_samples,learning_rate,num_warmup_updates,save_per_updates,last_per_steps,ch_finetune],outputs=[batch_size_per_gpu,max_samples,num_warmup_updates,save_per_updates,last_per_steps,lb_samples,learning_rate]) with gr.TabItem("reduse checkpoint"): txt_path_checkpoint = gr.Text(label="path checkpoint :") txt_path_checkpoint_small = gr.Text(label="path output :") reduse_button = gr.Button("reduse") reduse_button.click(fn=extract_and_save_ema_model,inputs=[txt_path_checkpoint,txt_path_checkpoint_small]) with gr.TabItem("vocab check experiment"): check_button = gr.Button("check vocab") txt_info_check=gr.Text(label="info",value="") check_button.click(fn=vocab_check,inputs=[project_name],outputs=[txt_info_check]) @click.command() @click.option("--port", "-p", default=None, type=int, help="Port to run the app on") @click.option("--host", "-H", default=None, help="Host to run the app on") @click.option( "--share", "-s", default=False, is_flag=True, help="Share the app via Gradio share link", ) @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access") def main(port, host, share, api): global app print(f"Starting app...") app.queue(api_open=api).launch( server_name=host, server_port=port, share=share, show_api=api ) if __name__ == "__main__": name="my_speak" #create_data_project(name) #transcribe_all(name) #create_metadata(name) main()