File size: 22,501 Bytes
7af4264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# flake8: noqa: E402

import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
import logging

logging.getLogger("numba").setLevel(logging.WARNING)
import commons
import utils
from data_utils import (
    TextAudioSpeakerLoader,
    TextAudioSpeakerCollate,
    DistributedBucketSampler,
)
from models import (
    SynthesizerTrn,
    MultiPeriodDiscriminator,
    DurationDiscriminator,
)
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from text.symbols import symbols
from melo.download_utils import load_pretrain_model

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = (
    True  # If encontered training problem,please try to disable TF32.
)
torch.set_float32_matmul_precision("medium")


torch.backends.cudnn.benchmark = True
torch.backends.cuda.sdp_kernel("flash")
torch.backends.cuda.enable_flash_sdp(True)
# torch.backends.cuda.enable_mem_efficient_sdp(
#     True
# )  # Not available if torch version is lower than 2.0
torch.backends.cuda.enable_math_sdp(True)
global_step = 0


def run():
    hps = utils.get_hparams()
    local_rank = int(os.environ["LOCAL_RANK"])
    dist.init_process_group(
        backend="gloo",
        init_method="env://",  # Due to some training problem,we proposed to use gloo instead of nccl.
        rank=local_rank,
    )  # Use torchrun instead of mp.spawn
    rank = dist.get_rank()
    n_gpus = dist.get_world_size()
    
    torch.manual_seed(hps.train.seed)
    torch.cuda.set_device(rank)
    global global_step
    if rank == 0:
        logger = utils.get_logger(hps.model_dir)
        logger.info(hps)
        utils.check_git_hash(hps.model_dir)
        writer = SummaryWriter(log_dir=hps.model_dir)
        writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
    train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
    train_sampler = DistributedBucketSampler(
        train_dataset,
        hps.train.batch_size,
        [32, 300, 400, 500, 600, 700, 800, 900, 1000],
        num_replicas=n_gpus,
        rank=rank,
        shuffle=True,
    )
    collate_fn = TextAudioSpeakerCollate()
    train_loader = DataLoader(
        train_dataset,
        num_workers=16,
        shuffle=False,
        pin_memory=True,
        collate_fn=collate_fn,
        batch_sampler=train_sampler,
        persistent_workers=True,
        prefetch_factor=4,
    )  # DataLoader config could be adjusted.
    if rank == 0:
        eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
        eval_loader = DataLoader(
            eval_dataset,
            num_workers=0,
            shuffle=False,
            batch_size=1,
            pin_memory=True,
            drop_last=False,
            collate_fn=collate_fn,
        )
    if (
        "use_noise_scaled_mas" in hps.model.keys()
        and hps.model.use_noise_scaled_mas is True
    ):
        print("Using noise scaled MAS for VITS2")
        mas_noise_scale_initial = 0.01
        noise_scale_delta = 2e-6
    else:
        print("Using normal MAS for VITS1")
        mas_noise_scale_initial = 0.0
        noise_scale_delta = 0.0
    if (
        "use_duration_discriminator" in hps.model.keys()
        and hps.model.use_duration_discriminator is True
    ):
        print("Using duration discriminator for VITS2")
        net_dur_disc = DurationDiscriminator(
            hps.model.hidden_channels,
            hps.model.hidden_channels,
            3,
            0.1,
            gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
        ).cuda(rank)
    if (
        "use_spk_conditioned_encoder" in hps.model.keys()
        and hps.model.use_spk_conditioned_encoder is True
    ):
        if hps.data.n_speakers == 0:
            raise ValueError(
                "n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
            )
    else:
        print("Using normal encoder for VITS1")

    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        mas_noise_scale_initial=mas_noise_scale_initial,
        noise_scale_delta=noise_scale_delta,
        **hps.model,
    ).cuda(rank)

    net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
    optim_g = torch.optim.AdamW(
        filter(lambda p: p.requires_grad, net_g.parameters()),
        hps.train.learning_rate,
        betas=hps.train.betas,
        eps=hps.train.eps,
    )
    optim_d = torch.optim.AdamW(
        net_d.parameters(),
        hps.train.learning_rate,
        betas=hps.train.betas,
        eps=hps.train.eps,
    )
    if net_dur_disc is not None:
        optim_dur_disc = torch.optim.AdamW(
            net_dur_disc.parameters(),
            hps.train.learning_rate,
            betas=hps.train.betas,
            eps=hps.train.eps,
        )
    else:
        optim_dur_disc = None
    net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
    net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
    
    pretrain_G, pretrain_D, pretrain_dur = load_pretrain_model()
    hps.pretrain_G = hps.pretrain_G or pretrain_G
    hps.pretrain_D = hps.pretrain_D or pretrain_D
    hps.pretrain_dur = hps.pretrain_dur or pretrain_dur

    if hps.pretrain_G:
        utils.load_checkpoint(
                hps.pretrain_G,
                net_g,
                None,
                skip_optimizer=True
            )
    if hps.pretrain_D:
        utils.load_checkpoint(
                hps.pretrain_D,
                net_d,
                None,
                skip_optimizer=True
            )


    if net_dur_disc is not None:
        net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
        if hps.pretrain_dur:
            utils.load_checkpoint(
                    hps.pretrain_dur,
                    net_dur_disc,
                    None,
                    skip_optimizer=True
                )
                
    try:
        if net_dur_disc is not None:
            _, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
                utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
                net_dur_disc,
                optim_dur_disc,
                skip_optimizer=hps.train.skip_optimizer
                if "skip_optimizer" in hps.train
                else True,
            )
            _, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
                utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
                net_g,
                optim_g,
                skip_optimizer=hps.train.skip_optimizer
                if "skip_optimizer" in hps.train
                else True,
            )
            _, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
                utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
                net_d,
                optim_d,
                skip_optimizer=hps.train.skip_optimizer
                if "skip_optimizer" in hps.train
                else True,
            )
            if not optim_g.param_groups[0].get("initial_lr"):
                optim_g.param_groups[0]["initial_lr"] = g_resume_lr
            if not optim_d.param_groups[0].get("initial_lr"):
                optim_d.param_groups[0]["initial_lr"] = d_resume_lr
            if not optim_dur_disc.param_groups[0].get("initial_lr"):
                optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr

        epoch_str = max(epoch_str, 1)
        global_step = (epoch_str - 1) * len(train_loader)
    except Exception as e:
        print(e)
        epoch_str = 1
        global_step = 0

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
        optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
    )
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
        optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
    )
    if net_dur_disc is not None:
        scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
            optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
        )
    else:
        scheduler_dur_disc = None
    scaler = GradScaler(enabled=hps.train.fp16_run)

    for epoch in range(epoch_str, hps.train.epochs + 1):
        try:
            if rank == 0:
                train_and_evaluate(
                    rank,
                    epoch,
                    hps,
                    [net_g, net_d, net_dur_disc],
                    [optim_g, optim_d, optim_dur_disc],
                    [scheduler_g, scheduler_d, scheduler_dur_disc],
                    scaler,
                    [train_loader, eval_loader],
                    logger,
                    [writer, writer_eval],
                )
            else:
                train_and_evaluate(
                    rank,
                    epoch,
                    hps,
                    [net_g, net_d, net_dur_disc],
                    [optim_g, optim_d, optim_dur_disc],
                    [scheduler_g, scheduler_d, scheduler_dur_disc],
                    scaler,
                    [train_loader, None],
                    None,
                    None,
                )
        except Exception as e:
            print(e)
            torch.cuda.empty_cache()
        scheduler_g.step()
        scheduler_d.step()
        if net_dur_disc is not None:
            scheduler_dur_disc.step()


def train_and_evaluate(
    rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
):
    net_g, net_d, net_dur_disc = nets
    optim_g, optim_d, optim_dur_disc = optims
    scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
    train_loader, eval_loader = loaders
    if writers is not None:
        writer, writer_eval = writers

    train_loader.batch_sampler.set_epoch(epoch)
    global global_step

    net_g.train()
    net_d.train()
    if net_dur_disc is not None:
        net_dur_disc.train()
    for batch_idx, (
        x,
        x_lengths,
        spec,
        spec_lengths,
        y,
        y_lengths,
        speakers,
        tone,
        language,
        bert,
        ja_bert,
    ) in enumerate(tqdm(train_loader)):
        if net_g.module.use_noise_scaled_mas:
            current_mas_noise_scale = (
                net_g.module.mas_noise_scale_initial
                - net_g.module.noise_scale_delta * global_step
            )
            net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
        x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
            rank, non_blocking=True
        )
        spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
            rank, non_blocking=True
        )
        y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
            rank, non_blocking=True
        )
        speakers = speakers.cuda(rank, non_blocking=True)
        tone = tone.cuda(rank, non_blocking=True)
        language = language.cuda(rank, non_blocking=True)
        bert = bert.cuda(rank, non_blocking=True)
        ja_bert = ja_bert.cuda(rank, non_blocking=True)

        with autocast(enabled=hps.train.fp16_run):
            (
                y_hat,
                l_length,
                attn,
                ids_slice,
                x_mask,
                z_mask,
                (z, z_p, m_p, logs_p, m_q, logs_q),
                (hidden_x, logw, logw_),
            ) = net_g(
                x,
                x_lengths,
                spec,
                spec_lengths,
                speakers,
                tone,
                language,
                bert,
                ja_bert,
            )
            mel = spec_to_mel_torch(
                spec,
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.mel_fmin,
                hps.data.mel_fmax,
            )
            y_mel = commons.slice_segments(
                mel, ids_slice, hps.train.segment_size // hps.data.hop_length
            )
            y_hat_mel = mel_spectrogram_torch(
                y_hat.squeeze(1),
                hps.data.filter_length,
                hps.data.n_mel_channels,
                hps.data.sampling_rate,
                hps.data.hop_length,
                hps.data.win_length,
                hps.data.mel_fmin,
                hps.data.mel_fmax,
            )

            y = commons.slice_segments(
                y, ids_slice * hps.data.hop_length, hps.train.segment_size
            )  # slice

            # Discriminator
            y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
            with autocast(enabled=False):
                loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
                    y_d_hat_r, y_d_hat_g
                )
                loss_disc_all = loss_disc
            if net_dur_disc is not None:
                y_dur_hat_r, y_dur_hat_g = net_dur_disc(
                    hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
                )
                with autocast(enabled=False):
                    # TODO: I think need to mean using the mask, but for now, just mean all
                    (
                        loss_dur_disc,
                        losses_dur_disc_r,
                        losses_dur_disc_g,
                    ) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
                    loss_dur_disc_all = loss_dur_disc
                optim_dur_disc.zero_grad()
                scaler.scale(loss_dur_disc_all).backward()
                scaler.unscale_(optim_dur_disc)
                commons.clip_grad_value_(net_dur_disc.parameters(), None)
                scaler.step(optim_dur_disc)

        optim_d.zero_grad()
        scaler.scale(loss_disc_all).backward()
        scaler.unscale_(optim_d)
        grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
        scaler.step(optim_d)

        with autocast(enabled=hps.train.fp16_run):
            # Generator
            y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
            if net_dur_disc is not None:
                y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
            with autocast(enabled=False):
                loss_dur = torch.sum(l_length.float())
                loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
                loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl

                loss_fm = feature_loss(fmap_r, fmap_g)
                loss_gen, losses_gen = generator_loss(y_d_hat_g)
                loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
                if net_dur_disc is not None:
                    loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
                    loss_gen_all += loss_dur_gen
        optim_g.zero_grad()
        scaler.scale(loss_gen_all).backward()
        scaler.unscale_(optim_g)
        grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
        scaler.step(optim_g)
        scaler.update()

        if rank == 0:
            if global_step % hps.train.log_interval == 0:
                lr = optim_g.param_groups[0]["lr"]
                losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
                logger.info(
                    "Train Epoch: {} [{:.0f}%]".format(
                        epoch, 100.0 * batch_idx / len(train_loader)
                    )
                )
                logger.info([x.item() for x in losses] + [global_step, lr])

                scalar_dict = {
                    "loss/g/total": loss_gen_all,
                    "loss/d/total": loss_disc_all,
                    "learning_rate": lr,
                    "grad_norm_d": grad_norm_d,
                    "grad_norm_g": grad_norm_g,
                }
                scalar_dict.update(
                    {
                        "loss/g/fm": loss_fm,
                        "loss/g/mel": loss_mel,
                        "loss/g/dur": loss_dur,
                        "loss/g/kl": loss_kl,
                    }
                )
                scalar_dict.update(
                    {"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
                )
                scalar_dict.update(
                    {"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
                )
                scalar_dict.update(
                    {"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
                )

                image_dict = {
                    "slice/mel_org": utils.plot_spectrogram_to_numpy(
                        y_mel[0].data.cpu().numpy()
                    ),
                    "slice/mel_gen": utils.plot_spectrogram_to_numpy(
                        y_hat_mel[0].data.cpu().numpy()
                    ),
                    "all/mel": utils.plot_spectrogram_to_numpy(
                        mel[0].data.cpu().numpy()
                    ),
                    "all/attn": utils.plot_alignment_to_numpy(
                        attn[0, 0].data.cpu().numpy()
                    ),
                }
                utils.summarize(
                    writer=writer,
                    global_step=global_step,
                    images=image_dict,
                    scalars=scalar_dict,
                )

            if global_step % hps.train.eval_interval == 0:
                evaluate(hps, net_g, eval_loader, writer_eval)
                utils.save_checkpoint(
                    net_g,
                    optim_g,
                    hps.train.learning_rate,
                    epoch,
                    os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
                )
                utils.save_checkpoint(
                    net_d,
                    optim_d,
                    hps.train.learning_rate,
                    epoch,
                    os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
                )
                if net_dur_disc is not None:
                    utils.save_checkpoint(
                        net_dur_disc,
                        optim_dur_disc,
                        hps.train.learning_rate,
                        epoch,
                        os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
                    )
                keep_ckpts = getattr(hps.train, "keep_ckpts", 5)
                if keep_ckpts > 0:
                    utils.clean_checkpoints(
                        path_to_models=hps.model_dir,
                        n_ckpts_to_keep=keep_ckpts,
                        sort_by_time=True,
                    )

        global_step += 1

    if rank == 0:
        logger.info("====> Epoch: {}".format(epoch))
    torch.cuda.empty_cache()


def evaluate(hps, generator, eval_loader, writer_eval):
    generator.eval()
    image_dict = {}
    audio_dict = {}
    print("Evaluating ...")
    with torch.no_grad():
        for batch_idx, (
            x,
            x_lengths,
            spec,
            spec_lengths,
            y,
            y_lengths,
            speakers,
            tone,
            language,
            bert,
            ja_bert,
        ) in enumerate(eval_loader):
            x, x_lengths = x.cuda(), x_lengths.cuda()
            spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
            y, y_lengths = y.cuda(), y_lengths.cuda()
            speakers = speakers.cuda()
            bert = bert.cuda()
            ja_bert = ja_bert.cuda()
            tone = tone.cuda()
            language = language.cuda()
            for use_sdp in [True, False]:
                y_hat, attn, mask, *_ = generator.module.infer(
                    x,
                    x_lengths,
                    speakers,
                    tone,
                    language,
                    bert,
                    ja_bert,
                    y=spec,
                    max_len=1000,
                    sdp_ratio=0.0 if not use_sdp else 1.0,
                )
                y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length

                mel = spec_to_mel_torch(
                    spec,
                    hps.data.filter_length,
                    hps.data.n_mel_channels,
                    hps.data.sampling_rate,
                    hps.data.mel_fmin,
                    hps.data.mel_fmax,
                )
                y_hat_mel = mel_spectrogram_torch(
                    y_hat.squeeze(1).float(),
                    hps.data.filter_length,
                    hps.data.n_mel_channels,
                    hps.data.sampling_rate,
                    hps.data.hop_length,
                    hps.data.win_length,
                    hps.data.mel_fmin,
                    hps.data.mel_fmax,
                )
                image_dict.update(
                    {
                        f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
                            y_hat_mel[0].cpu().numpy()
                        )
                    }
                )
                audio_dict.update(
                    {
                        f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
                            0, :, : y_hat_lengths[0]
                        ]
                    }
                )
                image_dict.update(
                    {
                        f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
                            mel[0].cpu().numpy()
                        )
                    }
                )
                audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})

    utils.summarize(
        writer=writer_eval,
        global_step=global_step,
        images=image_dict,
        audios=audio_dict,
        audio_sampling_rate=hps.data.sampling_rate,
    )
    generator.train()
    print('Evauate done')
    torch.cuda.empty_cache()


if __name__ == "__main__":
    run()