File size: 8,905 Bytes
a8edea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
785a54b
a8edea3
 
 
 
 
fb9114d
a8edea3
 
 
 
 
 
 
 
 
 
 
 
 
 
785a54b
 
a8edea3
 
 
 
 
 
 
 
785a54b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caff12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8edea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
785a54b
 
a8edea3
 
 
785a54b
dfb402a
785a54b
caff12e
 
 
 
 
 
 
 
a8edea3
 
 
 
 
 
 
785a54b
a8edea3
 
785a54b
 
 
caff12e
 
2959d62
a8edea3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os

import rwkv_rs
import numpy as np
import huggingface_hub
import tokenizers

import gradio as gr

model_path = "./rnn.safetensors"
if not os.path.exists(model_path):
    model_path = huggingface_hub.hf_hub_download(repo_id="mrsteyk/RWKV-LM-safetensors", filename="RWKV-4-Pile-7B-Instruct-test1-20230124.rnn.safetensors")
assert model_path is not None

model = rwkv_rs.Rwkv(model_path)
tokenizer = tokenizers.Tokenizer.from_pretrained("EleutherAI/gpt-neox-20b")

GT = [
    gr.Button.update(visible=False),
    gr.Button.update(visible=True),
]
GF = [
    gr.Button.update(visible=True),
    gr.Button.update(visible=False),
]

def complete_fn(inpt, max_tokens, min_tokens, alpha_f, alpha_p):
    try:
        state = rwkv_rs.State(model)
        text = inpt
        counts = [0]*tokenizer.get_vocab_size()
        tokens = tokenizer.encode(inpt).ids
        yield (None, gr.Text.update(visible=False))
        # yield ("Preproc...", gr.Text.update(visible=False))
        # logits = model.forward(tokens, state)
        for i in range(len(tokens) - 1):
            model.forward_token_preproc(tokens[i], state)
            yield (tokenizer.decode(tokens[:i + 1]), None)
        logits = model.forward_token(tokens[-1], state)
        yield (text, None)
        max_tokens = int(max_tokens)
        for i in range(max_tokens):
            if i < min_tokens:
                logits[0] = -100
            for i in range(len(counts)):
                logits[i] -= (counts[i]* alpha_f) + (float(counts[i] > 0) * alpha_p)
            token = np.argmax(logits)
            counts[token] += 1
            if token == 0:
                break
            tokens += [token]
            text = tokenizer.decode(tokens)
            yield (text, None)
            if i == max_tokens - 1:
                break
            logits = model.forward_token(token, state)
        yield (text, None)
    except Exception as e:
        print(e)
        yield ("Error...", gr.Text.update(value=str(e), visible=True))
    # finally:
    #     return (None, None)

def insert_fn(inpt: str, max_tokens, min_tokens, alpha_f, alpha_p, num_tokens_insert):
    try:
        if inpt.count("<|INSERT|>") != 1:
            yield ("Error...", gr.Text.update(value="Exactly one replace is allowed!", visible=True))
            return
        state = rwkv_rs.State(model)
        text, end = inpt.split("<|INSERT|>")
        counts = [0]*tokenizer.get_vocab_size()
        tokens = tokenizer.encode(text).ids
        tokens_end = tokenizer.encode(end).ids
        tokens_i = tokens_end[:num_tokens_insert]
        ins = [0]*len(tokens_i)
        yield (None, gr.Text.update(visible=False))
        for i in range(len(tokens) - 1):
            model.forward_token_preproc(tokens[i], state)
            yield (tokenizer.decode(tokens[:i + 1]), None)
        logits = model.forward_token(tokens[-1], state)
        yield (text, None)
        max_tokens = int(max_tokens)
        for i in range(max_tokens):
            if i < min_tokens:
                logits[0] = -100
            for i in range(len(counts)):
                logits[i] -= (counts[i]* alpha_f) + (float(counts[i] > 0) * alpha_p)
            token = np.argmax(logits)
            counts[token] += 1
            if token == 0:
                break
            tokens += [token]
            ins = ins[1:] + [token]
            if ins == tokens_i:
                tokens += tokens_end[num_tokens_insert:]
                i = max_tokens - 1 # to break earlier...
            text = tokenizer.decode(tokens)
            yield (text, None)
            if i == max_tokens - 1:
                break
            logits = model.forward_token(token, state)
        yield (text, None)
    except Exception as e:
        print(e)
        yield ("Error...", gr.Text.update(value=str(e), visible=True))

# def classify_fn_inner(inpt, clas):
#     state = rwkv_rs.State(model)
#     tokens = tokenizer.encode(f"This is an example of {clas} text: {inpt}").ids
#     for i in tokens[:-2]:
#         model.forward_token_preproc(i, state)
#     # state_2 = state.copy()

#     logit_x_1 = softmax(model.forward_token(tokens[-2], state))
#     logit_y_1 = softmax(model.forward_token(tokens[-1], state))
#     # shapep = logit_x_1.shape[0] * 0.9
#     # s = np.sort(logit_y_1)[::-1]
#     # c = s[np.argmax(np.cumsum(s) > 0.9)]
#     # logit_y_1[logit_y_1 < c] = 0
#     loss_1 = -np.sum(logit_y_1 * np.log(logit_x_1)) / logit_x_1.shape[0]

#     # I forgor that I do not return the preproc shit...
#     # logit_x_2 = model.forward_token_preproc(tokens[-2], state_2)
#     # logit_y_2 = model.forward_token_preproc(tokens[-1], state_2)
#     return (loss_1, None)

def classify_fn_inner2(inpt, clas):
    state = rwkv_rs.State(model)
    tokens = tokenizer.encode(f"This is an example of {clas} text:").ids
    for i in tokens:
        model.forward_token_preproc(i, state)

    logits = []
    tokens = tokenizer.encode(f" {inpt}\n").ids
    for i in tokens[:-1]:
        logits.append(model.forward_token(i, state))
    logit_x = [softmax(i) for i in logits]
    loss = -np.sum([ x[y] for x, y in zip(logit_x, tokens[1:]) ]) / len(logit_x)

    return loss 

def softmax(x):
    e = np.exp(x - np.max(x))
    return e / e.sum()

# TODO: maybe make a function with pos/neg inputs?
def classify_fn(inpt, clas, clasneg):
    # loss_1, loss_2 = classify_fn_inner(inpt, clas)
    # loss_1_neg, loss_2_neg = classify_fn_inner(inpt, clasneg)

    # print(loss_1, loss_1_neg, end=' | ')
    # # We negate the loss because we want to know who's closer to 0
    # loss_1, loss_1_neg = softmax([-loss_1, -loss_1_neg])
    # print(loss_1, loss_1_neg)

    loss_3 = classify_fn_inner2(inpt, clas)
    loss_3_neg = classify_fn_inner2(inpt, clasneg)
    print(loss_3, loss_3_neg, end=' | ')
    loss_3, loss_3_neg = softmax([-loss_3, -loss_3_neg])
    print(loss_3, loss_3_neg)

    # return ({"v1_pos": loss_1, "v1_neg": loss_1_neg, "v3_pos": loss_3, "v3_neg": loss_3_neg})
    return ({"+": loss_3, "-": loss_3_neg})

def generator_wrap(l, fn):
    def wrap(*args):
        last_i = list([None] * l)
        try:
            for i in fn(*args):
                last_i = list(i)
                yield last_i + GT
        finally:
            yield last_i + GF
    return wrap


with gr.Blocks() as app:
    gr.Markdown(f"Running on `{model_path}`")
    error_box = gr.Text(label="Error", visible=False)

    with gr.Tab("Complete"):
        with gr.Row():
            inpt = gr.TextArea(label="Input")
            out = gr.TextArea(label="Output")
        complete = gr.Button("Complete", variant="primary")
        c_stop = gr.Button("Stop", variant="stop", visible=False)
    with gr.Tab("Insert"):
        gr.Markdown("Use `<|INSERT|>` to indicate a place to replace, if insert fails - end text won't be concatenated")
        with gr.Row():
            inpt_i = gr.TextArea(label="Input")
            out_i = gr.TextArea(label="Output")
        num_tokens_insert = gr.Slider(label="Number of tokens to compare for ending (from the beginning of 2nd part)", minimum=1, maximum=2048, value=1024, step=1)
        insert = gr.Button("Insert", variant="primary")
        i_stop = gr.Button("Stop", variant="stop", visible=False)
    with gr.Tab("Classification W/O head"):
        gr.Markdown("This is an experimental classification attempt based on [this Twitter post](https://twitter.com/aicrumb/status/1625239547268280321)\n\nSettings at the bottom do no affect this example.")
        with gr.Row():
            inpt_c = gr.TextArea(label="Input")
            out_c = gr.Label(label="Output")
        clas = gr.Textbox(label="+ NL class/example to check against.")
        clasneg = gr.Textbox(label="- NL class/example to check against.")
        classify = gr.Button("Classify", variant="primary")

    with gr.Column():
        max_tokens = gr.Slider(label="Max Tokens", minimum=1, maximum=4096, step=1, value=767)
        min_tokens = gr.Slider(label="Min Tokens", minimum=0, maximum=4096, step=1)
        alpha_f = gr.Slider(label="Alpha Frequency", minimum=0, maximum=100, step=0.01)
        alpha_p = gr.Slider(label="Alpha Presence", minimum=0, maximum=100, step=0.01)

    c = complete.click(generator_wrap(2, complete_fn), [inpt, max_tokens, min_tokens, alpha_f, alpha_p], [out, error_box, complete, c_stop])
    c_stop.click(lambda: (complete.update(visible=True), c_stop.update(visible=False)), inputs=None, outputs=[complete, c_stop], cancels=[c], queue=False)

    i = insert.click(generator_wrap(2, insert_fn), [inpt_i, max_tokens, min_tokens, alpha_f, alpha_p, num_tokens_insert], [out_i, error_box, insert, i_stop])
    i_stop.click(lambda: (insert.update(visible=True), i_stop.update(visible=False)), inputs=None, outputs=[insert, i_stop], cancels=[i], queue=False)

    classify.click(classify_fn, [inpt_c, clas, clasneg], [out_c])

app.queue(concurrency_count=2)
app.launch()