import os import random import uuid from urllib.parse import quote from requests import get from bs4 import BeautifulSoup import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import DiffusionPipeline DESCRIPTION = """Hepzeka.com Görsel Oluşturma Aracı""" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo may not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") NUM_IMAGES_PER_PROMPT = 1 valid_languages = {'tr', 'fr', 'esp', 'en'} if torch.cuda.is_available(): pipe = DiffusionPipeline.from_pretrained( "playgroundai/playground-v2.5-1024px-aesthetic", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False, variant="fp16" ) if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() else: pipe.to(device) print("Loaded on Device!") if USE_TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) print("Model Compiled!") def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def translate_to_english(phrase, src_lang): if src_lang == 'en': return phrase dest_lang = 'en' encoded_phrase = quote(phrase) url = f"https://translate.glosbe.com/{src_lang}-{dest_lang}/{encoded_phrase}" response = get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') translation_div = soup.find('div', class_='w-full h-full bg-gray-100 h-full border p-2 min-h-25vh sm:min-h-50vh whitespace-pre-wrap break-words') translation = translation_div.text if translation_div else "Translation not found" return translation else: return "Error: Unable to translate" @spaces.GPU(enable_queue=True) def generate( phrase: str, input_lang: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, randomize_seed: bool = False, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): pipe.to(device) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) if input_lang != 'en': prompt = translate_to_english(phrase, input_lang) else: prompt = phrase if not use_negative_prompt: negative_prompt = None # type: ignore images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=25, generator=generator, num_images_per_prompt=NUM_IMAGES_PER_PROMPT, use_resolution_binning=use_resolution_binning, output_type="pil", ).images image_paths = [save_image(img) for img in images] print(image_paths) return image_paths, seed examples = [ ["nyɔnu e nɔ sa tomati ɖo aximɛ", "fon"], ["ọba ilẹ̀ benin kan", "yo"], ["an astronaut riding a horse in space", "en"], ["a cartoon of a boy playing with a tiger", "en"], ["a cute robot artist painting on an easel, concept art", "en"], ["a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone", "en"] ] css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} ''' with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): input_lang = gr.Dropdown(choices=list(valid_languages), value='en', label='Input Language') prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False) with gr.Accordion("Advanced options", open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=20, step=0.1, value=3.0, ) gr.Examples( examples=examples, inputs=[prompt, input_lang], outputs=[result, seed], fn=generate, cache_examples=CACHE_EXAMPLES, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, input_lang, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed, ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()