Spaces:
Runtime error
Runtime error
murtazadahmardeh
commited on
Commit
•
9f091f5
1
Parent(s):
4cdf723
Testing 1
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import onnx
|
3 |
+
import onnxruntime as rt
|
4 |
+
from torchvision import transforms as T
|
5 |
+
from PIL import Image
|
6 |
+
from tokenizer_base import Tokenizer
|
7 |
+
import pathlib
|
8 |
+
import os
|
9 |
+
import gradio as gr
|
10 |
+
from huggingface_hub import Repository
|
11 |
+
|
12 |
+
repo = Repository(
|
13 |
+
local_dir="secret_models",
|
14 |
+
repo_type="model",
|
15 |
+
clone_from="docparser/captcha",
|
16 |
+
token=True
|
17 |
+
)
|
18 |
+
repo.git_pull()
|
19 |
+
|
20 |
+
cwd = pathlib.Path(__file__).parent.resolve()
|
21 |
+
model_file = os.path.join(cwd,"secret_models","captcha.onnx")
|
22 |
+
img_size = (32,128)
|
23 |
+
charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
|
24 |
+
tokenizer_base = Tokenizer(charset)
|
25 |
+
|
26 |
+
def get_transform(img_size):
|
27 |
+
transforms = []
|
28 |
+
transforms.extend([
|
29 |
+
T.Resize(img_size, T.InterpolationMode.BICUBIC),
|
30 |
+
T.ToTensor(),
|
31 |
+
T.Normalize(0.5, 0.5)
|
32 |
+
])
|
33 |
+
return T.Compose(transforms)
|
34 |
+
|
35 |
+
def to_numpy(tensor):
|
36 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
|
37 |
+
|
38 |
+
def initialize_model(model_file):
|
39 |
+
transform = get_transform(img_size)
|
40 |
+
# Onnx model loading
|
41 |
+
onnx_model = onnx.load(model_file)
|
42 |
+
onnx.checker.check_model(onnx_model)
|
43 |
+
ort_session = rt.InferenceSession(model_file)
|
44 |
+
return transform,ort_session
|
45 |
+
|
46 |
+
def get_text(img_org):
|
47 |
+
# img_org = Image.open(image_path)
|
48 |
+
# Preprocess. Model expects a batch of images with shape: (B, C, H, W)
|
49 |
+
x = transform(img_org.convert('RGB')).unsqueeze(0)
|
50 |
+
|
51 |
+
# compute ONNX Runtime output prediction
|
52 |
+
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
|
53 |
+
logits = ort_session.run(None, ort_inputs)[0]
|
54 |
+
probs = torch.tensor(logits).softmax(-1)
|
55 |
+
preds, probs = tokenizer_base.decode(probs)
|
56 |
+
preds = preds[0]
|
57 |
+
print(preds)
|
58 |
+
return preds
|
59 |
+
|
60 |
+
transform,ort_session = initialize_model(model_file=model_file)
|
61 |
+
|
62 |
+
gr.Interface(
|
63 |
+
get_text,
|
64 |
+
inputs=gr.Image(type="pil"),
|
65 |
+
outputs=gr.outputs.Textbox(),
|
66 |
+
title="Text Captcha Reader",
|
67 |
+
examples=["8000.png","11JW29.png","2a8486.jpg","2nbcx.png",
|
68 |
+
"000679.png","000HU.png","00Uga.png.jpg","00bAQwhAZU.jpg",
|
69 |
+
"00h57kYf.jpg","0EoHdtVb.png","0JS21.png","0p98z.png","10010.png"]
|
70 |
+
).launch()
|