Spaces:
Running
Running
from typing import Any, List, Tuple | |
from langchain.callbacks.manager import Callbacks | |
from langchain.chains.combine_documents.stuff import StuffDocumentsChain | |
from langchain.docstore.document import Document | |
from langchain.schema.prompt_template import format_document | |
class CustomStuffDocumentChain(StuffDocumentsChain): | |
"""Combine arxiv documents with PDF reference number""" | |
def _get_inputs(self, docs: List[Document], **kwargs: Any) -> dict: | |
"""Construct inputs from kwargs and docs. | |
Format and the join all the documents together into one input with name | |
`self.document_variable_name`. The pluck any additional variables | |
from **kwargs. | |
Args: | |
docs: List of documents to format and then join into single input | |
**kwargs: additional inputs to chain, will pluck any other required | |
arguments from here. | |
Returns: | |
dictionary of inputs to LLMChain | |
""" | |
# Format each document according to the prompt | |
doc_strings = [] | |
for doc_id, doc in enumerate(docs): | |
# add temp reference number in metadata | |
doc.metadata.update({'ref_id': doc_id}) | |
doc.page_content = doc.page_content.replace('\n', ' ') | |
doc_strings.append(format_document(doc, self.document_prompt)) | |
# Join the documents together to put them in the prompt. | |
inputs = { | |
k: v | |
for k, v in kwargs.items() | |
if k in self.llm_chain.prompt.input_variables | |
} | |
inputs[self.document_variable_name] = self.document_separator.join( | |
doc_strings) | |
return inputs | |
def combine_docs( | |
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any | |
) -> Tuple[str, dict]: | |
"""Stuff all documents into one prompt and pass to LLM. | |
Args: | |
docs: List of documents to join together into one variable | |
callbacks: Optional callbacks to pass along | |
**kwargs: additional parameters to use to get inputs to LLMChain. | |
Returns: | |
The first element returned is the single string output. The second | |
element returned is a dictionary of other keys to return. | |
""" | |
inputs = self._get_inputs(docs, **kwargs) | |
# Call predict on the LLM. | |
output = self.llm_chain.predict(callbacks=callbacks, **inputs) | |
return output, {} | |
def _chain_type(self) -> str: | |
return "custom_stuff_document_chain" | |