from typing import Dict, Any, List import streamlit as st from langchain.callbacks.streamlit.streamlit_callback_handler import ( StreamlitCallbackHandler, ) from langchain.schema.output import LLMResult class CustomSelfQueryRetrieverCallBackHandler(StreamlitCallbackHandler): def __init__(self): super().__init__(st.container()) self._current_thought = None self.progress_bar = st.progress(value=0.0, text="Executing ChatData SelfQuery...") def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: self.progress_bar.progress(value=0.35, text="Communicate with LLM...") pass def on_chain_end(self, outputs, **kwargs) -> None: if len(kwargs['tags']) == 0: self.progress_bar.progress(value=0.75, text="Searching in DB...") pass def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: st.markdown("### Generate filter by LLM \n" "> Here we get `query_constructor` results \n\n") self.progress_bar.progress(value=0.5, text="Generate filter by LLM...") for item in response.generations: st.markdown(f"{item[0].text}") pass class ChatDataSelfAskCallBackHandler(StreamlitCallbackHandler): def __init__(self) -> None: super().__init__(st.container()) self.progress_bar = st.progress(value=0.2, text="Executing ChatData SelfQuery Chain...") def on_llm_start(self, serialized, prompts, **kwargs) -> None: pass def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: if len(kwargs['tags']) != 0: self.progress_bar.progress(value=0.5, text="We got filter info from LLM...") st.markdown("### Generate filter by LLM \n" "> Here we get `query_constructor` results \n\n") for item in response.generations: st.markdown(f"{item[0].text}") pass def on_chain_start(self, serialized, inputs, **kwargs) -> None: cid = ".".join(serialized["id"]) if cid.endswith(".CustomStuffDocumentChain"): self.progress_bar.progress(value=0.7, text="Asking LLM with related documents...")