import os
import time
import argparse
from typing import Iterator
import gradio as gr
from dotenv import load_dotenv
from distutils.util import strtobool
from llama2_wrapper import LLAMA2_WRAPPER
import logging
from prompts.utils import PromtsContainer
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="", help="model path")
parser.add_argument(
"--backend_type",
type=str,
default="",
help="Backend options: llama.cpp, gptq, transformers, llama2.cu",
)
parser.add_argument(
"--load_in_8bit",
type=bool,
default=False,
help="Whether to use bitsandbytes 8 bit.",
)
parser.add_argument(
"--share",
type=bool,
default=False,
help="Whether to share public for gradio.",
)
args = parser.parse_args()
load_dotenv()
DEFAULT_SYSTEM_PROMPT = os.getenv("DEFAULT_SYSTEM_PROMPT", "")
MAX_MAX_NEW_TOKENS = int(os.getenv("MAX_MAX_NEW_TOKENS", 2048))
DEFAULT_MAX_NEW_TOKENS = int(os.getenv("DEFAULT_MAX_NEW_TOKENS", 1024))
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", 4000))
MODEL_PATH = os.getenv("MODEL_PATH")
assert MODEL_PATH is not None, f"MODEL_PATH is required, got: {MODEL_PATH}"
BACKEND_TYPE = os.getenv("BACKEND_TYPE")
assert BACKEND_TYPE is not None, f"BACKEND_TYPE is required, got: {BACKEND_TYPE}"
LOAD_IN_8BIT = bool(strtobool(os.getenv("LOAD_IN_8BIT", "True")))
if args.model_path != "":
MODEL_PATH = args.model_path
if args.backend_type != "":
BACKEND_TYPE = args.backend_type
if args.load_in_8bit:
LOAD_IN_8BIT = True
llama2_wrapper = LLAMA2_WRAPPER(
model_path=MODEL_PATH,
backend_type=BACKEND_TYPE,
max_tokens=MAX_INPUT_TOKEN_LENGTH,
load_in_8bit=LOAD_IN_8BIT,
verbose=True,
)
DESCRIPTION = """
# llama2-webui
"""
DESCRIPTION2 = """
- Supporting models: [Llama-2-7b](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML)/[13b](https://huggingface.co/llamaste/Llama-2-13b-chat-hf)/[70b](https://huggingface.co/llamaste/Llama-2-70b-chat-hf), [Llama-2-GPTQ](https://huggingface.co/TheBloke/Llama-2-7b-Chat-GPTQ), [Llama-2-GGML](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML), [CodeLlama](https://huggingface.co/TheBloke/CodeLlama-7B-Instruct-GPTQ) ...
- Supporting model backends: [tranformers](https://github.com/huggingface/transformers), [bitsandbytes(8-bit inference)](https://github.com/TimDettmers/bitsandbytes), [AutoGPTQ(4-bit inference)](https://github.com/PanQiWei/AutoGPTQ), [llama.cpp](https://github.com/ggerganov/llama.cpp)
"""
def clear_and_save_textbox(message: str) -> tuple[str, str]:
return "", message
def save_textbox_for_prompt(message: str) -> str:
logging.info("start save_textbox_from_prompt")
message = convert_summary_to_prompt(message)
return message
def display_input(
message: str, history: list[tuple[str, str]]
) -> list[tuple[str, str]]:
history.append((message, ""))
return history
def delete_prev_fn(
history: list[tuple[str, str]]
) -> tuple[list[tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ""
return history, message or ""
def generate(
message: str,
history_with_input: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
platform: str,
) -> tuple[Iterator[list[tuple[str, str]]], str]:
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError
try:
history = history_with_input[:-1]
yield history + [(message, "")], "## processing prompt"
generator = llama2_wrapper.run(
message,
history,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
)
t = -time.perf_counter()
try:
first_response = next(generator)
t += time.perf_counter()
yield history + [(message, first_response)], "## generating"
t -= time.perf_counter()
except StopIteration:
yield history + [(message, "")], "## terminated"
num_tokens = 1
t = -time.perf_counter()
for response in generator:
num_tokens += 1
t += time.perf_counter()
yield history + [(message, response)], "## generating"
t -= time.perf_counter()
t += time.perf_counter()
if platform == None:
platform = "CUDA by default"
yield history + [(message, response)], f"### num tok: {num_tokens}
time(sec): {t:.2f}
tok/sec: {num_tokens / t:.2f}
{BACKEND_TYPE}({platform})"
except Exception as e:
logging.exception(e)
def check_input_token_length(
message: str, chat_history: list[tuple[str, str]], system_prompt: str
) -> None:
input_token_length = llama2_wrapper.get_input_token_length(
message, chat_history, system_prompt
)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(
f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again."
)
prompts_container = PromtsContainer()
prompts = prompts_container.get_prompts_tab_dict()
default_prompts_checkbox = False
default_advanced_checkbox = False
def convert_summary_to_prompt(summary):
return prompts_container.get_prompt_by_summary(summary)
def tab_list(tab_data, chatbot, perf, platform):
for item in tab_data:
with gr.Group():
gr.HTML(
f'
{item["act"]}
' ) prompt_text = gr.Button( value=f"{item['summary']}", size="sm", elem_classes="text-left-aligned", ) prompt_text.click( fn=save_textbox_for_prompt, inputs=prompt_text, outputs=saved_input, api_name=False, queue=True, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=True, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], api_name=False, queue=False, ).success( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, platform, ], outputs=[ chatbot, perf ], api_name=False, ) CSS = """ .contain { display: flex; flex-direction: column;} .text-left-aligned {text-align: left !important; font-size: 16px;} """ with gr.Blocks(css=CSS, title="Gradio") as demo: with gr.Row(): with gr.Column(visible=default_advanced_checkbox, variant="combat") as advanced_column: system_prompt = gr.Textbox( label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=6 ) max_new_tokens = gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ) temperature = gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=1.0, ) top_p = gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.95, ) top_k = gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ) with gr.Column(scale=2): with gr.Row(): gr.Markdown("# llama2-webui") perf = gr.Markdown(value=f"## performance