image2mesh / app.py
mie035
mod
fba2ed6
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import open3d as o3d
import os
from PIL import Image
import tempfile
import torch
from transformers import GLPNImageProcessor, GLPNForDepthEstimation
def predict_depth(image):
feature_extractor = GLPNImageProcessor.from_pretrained("vinvino02/glpn-nyu")
model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu")
# load and resize the input image
new_height = 480 if image.height > 480 else image.height
new_height -= (new_height % 32)
new_width = int(new_height * image.width / image.height)
diff = new_width % 32
new_width = new_width - diff if diff < 16 else new_width + 32 - diff
new_size = (new_width, new_height)
image = image.resize(new_size)
# prepare image for the model
inputs = feature_extractor(images=image, return_tensors="pt")
# get the prediction from the model
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
output = predicted_depth.squeeze().cpu().numpy() * 1000.0
# remove borders
pad = 16
output = output[pad:-pad, pad:-pad]
image = image.crop((pad, pad, image.width - pad, image.height - pad))
return image, output
def generate_mesh(image, depth_image, quality):
width, height = image.size
# depth_image = (depth_map * 255 / np.max(depth_map)).astype('uint8')
image = np.array(image)
# create rgbd image
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(image)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d,
convert_rgb_to_intensity=False)
# camera settings
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
camera_intrinsic.set_intrinsics(width, height, 500, 500, width / 2, height / 2)
# create point cloud
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
# outliers removal
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=20.0)
pcd = pcd.select_by_index(ind)
# estimate normals
pcd.estimate_normals()
pcd.orient_normals_to_align_with_direction(orientation_reference=(0., 0., -1.))
# surface reconstruction
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=quality, n_threads=1)[0]
# rotate the mesh
rotation = mesh.get_rotation_matrix_from_xyz((np.pi, np.pi, 0))
mesh.rotate(rotation, center=(0, 0, 0))
# save the mesh
temp_name = next(tempfile._get_candidate_names()) + '.obj'
o3d.io.write_triangle_mesh("public/" + temp_name, mesh)
return temp_name
def predict(image, quality):
image, depth_map = predict_depth(image)
depth_image = (depth_map * 255 / np.max(depth_map)).astype('uint8')
mesh_path = generate_mesh(image, depth_image, quality + 5)
colormap = plt.get_cmap('plasma')
depth_image = (colormap(depth_image) * 255).astype('uint8')
depth_image = Image.fromarray(depth_image)
return depth_image, mesh_path
if __name__ == '__main__':
# GUI
title = 'Image2Mesh'
description = 'Demo based on my <a href="https://towardsdatascience.com/generate-a-3d-mesh-from-an-image-with-python' \
'-12210c73e5cc">article</a>. This demo predicts the depth of an image and then generates the 3D mesh. ' \
'Choosing a higher quality increases the time to generate the mesh. You can download the mesh by ' \
'clicking the top-right button on the 3D viewer. '
examples = [[f'examples/{name}', 3] for name in sorted(os.listdir('examples'))]
# example image source:
# N. Silberman, D. Hoiem, P. Kohli, and Rob Fergus,
# Indoor Segmentation and Support Inference from RGBD Images (2012)
iface = gr.Interface(
fn=predict,
inputs=[
gr.Image(type='pil', label='Input Image'),
gr.Slider(1, 5, step=1, value=3, label='Mesh quality')
],
outputs=[
gr.Image(label='Depth'),
gr.Model3D(label='3D Model', clear_color=[0.0, 0.0, 0.0, 0.0])
],
examples=examples,
allow_flagging='never',
cache_examples=False,
title=title,
description=description
)
iface.launch()