Spaces:
Runtime error
Runtime error
fix: bug
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +2 -1
- 2586696_R0000008.jpg +0 -0
- 2586696_R0000009.jpg +0 -0
- app.py +38 -16
- requirements.txt +10 -30
- ultralytics/yolov5/.dockerignore +0 -222
- ultralytics/yolov5/.gitattributes +0 -2
- ultralytics/yolov5/.gitignore +0 -256
- ultralytics/yolov5/.pre-commit-config.yaml +0 -66
- ultralytics/yolov5/CONTRIBUTING.md +0 -94
- ultralytics/yolov5/Dockerfile +0 -65
- ultralytics/yolov5/LICENSE +0 -674
- ultralytics/yolov5/README.md +0 -304
- ultralytics/yolov5/data/Argoverse.yaml +0 -67
- ultralytics/yolov5/data/GlobalWheat2020.yaml +0 -54
- ultralytics/yolov5/data/Objects365.yaml +0 -113
- ultralytics/yolov5/data/SKU-110K.yaml +0 -53
- ultralytics/yolov5/data/VOC.yaml +0 -80
- ultralytics/yolov5/data/VisDrone.yaml +0 -61
- ultralytics/yolov5/data/coco.yaml +0 -45
- ultralytics/yolov5/data/coco128.yaml +0 -30
- ultralytics/yolov5/data/hyps/hyp.Objects365.yaml +0 -34
- ultralytics/yolov5/data/hyps/hyp.VOC.yaml +0 -40
- ultralytics/yolov5/data/hyps/hyp.scratch-high.yaml +0 -34
- ultralytics/yolov5/data/hyps/hyp.scratch-low.yaml +0 -34
- ultralytics/yolov5/data/hyps/hyp.scratch-med.yaml +0 -34
- ultralytics/yolov5/data/images/bus.jpg +0 -0
- ultralytics/yolov5/data/images/zidane.jpg +0 -0
- ultralytics/yolov5/data/scripts/download_weights.sh +0 -20
- ultralytics/yolov5/data/scripts/get_coco.sh +0 -27
- ultralytics/yolov5/data/scripts/get_coco128.sh +0 -17
- ultralytics/yolov5/data/xView.yaml +0 -102
- ultralytics/yolov5/detect.py +0 -252
- ultralytics/yolov5/models/__init__.py +0 -0
- ultralytics/yolov5/models/hub/anchors.yaml +0 -59
- ultralytics/yolov5/models/hub/yolov3-spp.yaml +0 -51
- ultralytics/yolov5/models/hub/yolov3-tiny.yaml +0 -41
- ultralytics/yolov5/models/hub/yolov3.yaml +0 -51
- ultralytics/yolov5/models/hub/yolov5-bifpn.yaml +0 -48
- ultralytics/yolov5/models/hub/yolov5-fpn.yaml +0 -42
- ultralytics/yolov5/models/hub/yolov5-p2.yaml +0 -54
- ultralytics/yolov5/models/hub/yolov5-p34.yaml +0 -41
- ultralytics/yolov5/models/hub/yolov5-p6.yaml +0 -56
- ultralytics/yolov5/models/hub/yolov5-p7.yaml +0 -67
- ultralytics/yolov5/models/hub/yolov5-panet.yaml +0 -48
- ultralytics/yolov5/models/hub/yolov5l6.yaml +0 -60
- ultralytics/yolov5/models/hub/yolov5m6.yaml +0 -60
- ultralytics/yolov5/models/hub/yolov5n6.yaml +0 -60
- ultralytics/yolov5/models/hub/yolov5s-ghost.yaml +0 -48
- ultralytics/yolov5/models/hub/yolov5s-transformer.yaml +0 -48
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
.DS_Store
|
2 |
yolov5s.pt
|
3 |
__pycache__
|
4 |
-
gradio_queue.db
|
|
|
|
1 |
.DS_Store
|
2 |
yolov5s.pt
|
3 |
__pycache__
|
4 |
+
gradio_queue.db
|
5 |
+
.venv
|
2586696_R0000008.jpg
CHANGED
2586696_R0000009.jpg
CHANGED
app.py
CHANGED
@@ -1,22 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from PIL import Image
|
4 |
-
|
5 |
-
import gdown
|
6 |
-
|
7 |
-
'''
|
8 |
-
# a file
|
9 |
-
url = "https://drive.google.com/uc?id=1-ZIa4KsSjhup4Pep70uBvI4BjnSUbocX"
|
10 |
-
output = "best.pt"
|
11 |
-
gdown.download(url, output, quiet=False)
|
12 |
-
'''
|
13 |
|
14 |
# Images
|
15 |
torch.hub.download_url_to_file('https://www.dl.ndl.go.jp/api/iiif/2586696/R0000008/full/1024,/0/default.jpg', '2586696_R0000008.jpg')
|
16 |
torch.hub.download_url_to_file('https://www.dl.ndl.go.jp/api/iiif/2586696/R0000009/full/1024,/0/default.jpg', '2586696_R0000009.jpg')
|
17 |
|
18 |
# Model
|
19 |
-
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update
|
20 |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', source="local")
|
21 |
|
22 |
def yolo(im, size=1024):
|
@@ -24,16 +15,47 @@ def yolo(im, size=1024):
|
|
24 |
im = im.resize((int(x * g) for x in im.size), Image.BICUBIC) # resize
|
25 |
|
26 |
results = model(im) # inference
|
27 |
-
results.
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
title = "YOLOv5 Kunshujo"
|
35 |
description = "YOLOv5 Kunshujo Gradio demo for object detection. Upload an image or click an example image to use."
|
36 |
article = "<p style='text-align: center'>YOLOv5 Kunshujo is an object detection model trained on the <a href=\"https://github.com/utda/kunshujo-layout-dataset\">Kunshujo layout dataset</a>.</p>"
|
37 |
|
38 |
examples = [['2586696_R0000008.jpg'], ['2586696_R0000009.jpg']]
|
39 |
-
gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples,
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Images
|
7 |
torch.hub.download_url_to_file('https://www.dl.ndl.go.jp/api/iiif/2586696/R0000008/full/1024,/0/default.jpg', '2586696_R0000008.jpg')
|
8 |
torch.hub.download_url_to_file('https://www.dl.ndl.go.jp/api/iiif/2586696/R0000009/full/1024,/0/default.jpg', '2586696_R0000009.jpg')
|
9 |
|
10 |
# Model
|
|
|
11 |
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt', source="local")
|
12 |
|
13 |
def yolo(im, size=1024):
|
|
|
15 |
im = im.resize((int(x * g) for x in im.size), Image.BICUBIC) # resize
|
16 |
|
17 |
results = model(im) # inference
|
18 |
+
df = results.pandas().xyxy[0].to_json(orient="records")
|
19 |
+
res = json.loads(df)
|
20 |
+
|
21 |
+
detected_images = []
|
22 |
+
|
23 |
+
im_draw = im.copy()
|
24 |
+
|
25 |
+
draw = ImageDraw.Draw(im_draw)
|
26 |
|
27 |
+
# JSONデータ内の座標に基づいて矩形を描画
|
28 |
+
for item in res:
|
29 |
|
30 |
+
xmin = item['xmin']# * w
|
31 |
+
ymin = item['ymin']# * h
|
32 |
+
xmax = item['xmax']# * w
|
33 |
+
ymax = item['ymax']# * h
|
34 |
+
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=2)
|
35 |
+
|
36 |
+
# Extract each detected object into a separate image
|
37 |
+
detected_object = im.crop((xmin, ymin, xmax, ymax))
|
38 |
+
detected_images.append(detected_object)
|
39 |
+
|
40 |
+
return [
|
41 |
+
res,
|
42 |
+
im_draw,
|
43 |
+
detected_images
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
inputs = gr.Image(type='pil', label="Original Image")
|
48 |
+
outputs = [
|
49 |
+
gr.JSON(),
|
50 |
+
gr.Image(type="pil", label="Output Image"),
|
51 |
+
gr.Gallery(label="Detected Objects", object_fit="contain")
|
52 |
+
]
|
53 |
|
54 |
title = "YOLOv5 Kunshujo"
|
55 |
description = "YOLOv5 Kunshujo Gradio demo for object detection. Upload an image or click an example image to use."
|
56 |
article = "<p style='text-align: center'>YOLOv5 Kunshujo is an object detection model trained on the <a href=\"https://github.com/utda/kunshujo-layout-dataset\">Kunshujo layout dataset</a>.</p>"
|
57 |
|
58 |
examples = [['2586696_R0000008.jpg'], ['2586696_R0000009.jpg']]
|
59 |
+
demo = gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, allow_flagging="never")
|
60 |
+
|
61 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,33 +1,13 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
# base ----------------------------------------
|
4 |
-
matplotlib>=3.2.2
|
5 |
-
numpy>=1.18.5
|
6 |
opencv-python-headless
|
7 |
Pillow
|
8 |
-
PyYAML
|
9 |
-
scipy
|
10 |
-
torch
|
11 |
-
torchvision
|
12 |
-
tqdm
|
13 |
-
|
14 |
-
# logging -------------------------------------
|
15 |
-
tensorboard>=2.4.1
|
16 |
-
# wandb
|
17 |
-
|
18 |
-
# plotting ------------------------------------
|
19 |
-
seaborn>=0.11.0
|
20 |
pandas
|
21 |
-
|
22 |
-
|
23 |
-
# coremltools>=4.1
|
24 |
-
# onnx>=1.9.0
|
25 |
-
# scikit-learn==0.19.2 # for coreml quantization
|
26 |
-
|
27 |
-
# extras --------------------------------------
|
28 |
-
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
|
29 |
-
# pycocotools>=2.0 # COCO mAP
|
30 |
-
# albumentations>=1.0.3
|
31 |
-
thop # FLOPs computation
|
32 |
-
|
33 |
-
gdown
|
|
|
1 |
+
matplotlib
|
2 |
+
numpy
|
|
|
|
|
|
|
3 |
opencv-python-headless
|
4 |
Pillow
|
5 |
+
PyYAML
|
6 |
+
scipy
|
7 |
+
torch
|
8 |
+
torchvision
|
9 |
+
tqdm
|
10 |
+
seaborn
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
pandas
|
12 |
+
gdown
|
13 |
+
gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/.dockerignore
DELETED
@@ -1,222 +0,0 @@
|
|
1 |
-
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
|
2 |
-
#.git
|
3 |
-
.cache
|
4 |
-
.idea
|
5 |
-
runs
|
6 |
-
output
|
7 |
-
coco
|
8 |
-
storage.googleapis.com
|
9 |
-
|
10 |
-
data/samples/*
|
11 |
-
**/results*.csv
|
12 |
-
*.jpg
|
13 |
-
|
14 |
-
# Neural Network weights -----------------------------------------------------------------------------------------------
|
15 |
-
**/*.pt
|
16 |
-
**/*.pth
|
17 |
-
**/*.onnx
|
18 |
-
**/*.engine
|
19 |
-
**/*.mlmodel
|
20 |
-
**/*.torchscript
|
21 |
-
**/*.torchscript.pt
|
22 |
-
**/*.tflite
|
23 |
-
**/*.h5
|
24 |
-
**/*.pb
|
25 |
-
*_saved_model/
|
26 |
-
*_web_model/
|
27 |
-
*_openvino_model/
|
28 |
-
|
29 |
-
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
30 |
-
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
31 |
-
|
32 |
-
|
33 |
-
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
34 |
-
# Byte-compiled / optimized / DLL files
|
35 |
-
__pycache__/
|
36 |
-
*.py[cod]
|
37 |
-
*$py.class
|
38 |
-
|
39 |
-
# C extensions
|
40 |
-
*.so
|
41 |
-
|
42 |
-
# Distribution / packaging
|
43 |
-
.Python
|
44 |
-
env/
|
45 |
-
build/
|
46 |
-
develop-eggs/
|
47 |
-
dist/
|
48 |
-
downloads/
|
49 |
-
eggs/
|
50 |
-
.eggs/
|
51 |
-
lib/
|
52 |
-
lib64/
|
53 |
-
parts/
|
54 |
-
sdist/
|
55 |
-
var/
|
56 |
-
wheels/
|
57 |
-
*.egg-info/
|
58 |
-
wandb/
|
59 |
-
.installed.cfg
|
60 |
-
*.egg
|
61 |
-
|
62 |
-
# PyInstaller
|
63 |
-
# Usually these files are written by a python script from a template
|
64 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
65 |
-
*.manifest
|
66 |
-
*.spec
|
67 |
-
|
68 |
-
# Installer logs
|
69 |
-
pip-log.txt
|
70 |
-
pip-delete-this-directory.txt
|
71 |
-
|
72 |
-
# Unit test / coverage reports
|
73 |
-
htmlcov/
|
74 |
-
.tox/
|
75 |
-
.coverage
|
76 |
-
.coverage.*
|
77 |
-
.cache
|
78 |
-
nosetests.xml
|
79 |
-
coverage.xml
|
80 |
-
*.cover
|
81 |
-
.hypothesis/
|
82 |
-
|
83 |
-
# Translations
|
84 |
-
*.mo
|
85 |
-
*.pot
|
86 |
-
|
87 |
-
# Django stuff:
|
88 |
-
*.log
|
89 |
-
local_settings.py
|
90 |
-
|
91 |
-
# Flask stuff:
|
92 |
-
instance/
|
93 |
-
.webassets-cache
|
94 |
-
|
95 |
-
# Scrapy stuff:
|
96 |
-
.scrapy
|
97 |
-
|
98 |
-
# Sphinx documentation
|
99 |
-
docs/_build/
|
100 |
-
|
101 |
-
# PyBuilder
|
102 |
-
target/
|
103 |
-
|
104 |
-
# Jupyter Notebook
|
105 |
-
.ipynb_checkpoints
|
106 |
-
|
107 |
-
# pyenv
|
108 |
-
.python-version
|
109 |
-
|
110 |
-
# celery beat schedule file
|
111 |
-
celerybeat-schedule
|
112 |
-
|
113 |
-
# SageMath parsed files
|
114 |
-
*.sage.py
|
115 |
-
|
116 |
-
# dotenv
|
117 |
-
.env
|
118 |
-
|
119 |
-
# virtualenv
|
120 |
-
.venv*
|
121 |
-
venv*/
|
122 |
-
ENV*/
|
123 |
-
|
124 |
-
# Spyder project settings
|
125 |
-
.spyderproject
|
126 |
-
.spyproject
|
127 |
-
|
128 |
-
# Rope project settings
|
129 |
-
.ropeproject
|
130 |
-
|
131 |
-
# mkdocs documentation
|
132 |
-
/site
|
133 |
-
|
134 |
-
# mypy
|
135 |
-
.mypy_cache/
|
136 |
-
|
137 |
-
|
138 |
-
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
139 |
-
|
140 |
-
# General
|
141 |
-
.DS_Store
|
142 |
-
.AppleDouble
|
143 |
-
.LSOverride
|
144 |
-
|
145 |
-
# Icon must end with two \r
|
146 |
-
Icon
|
147 |
-
Icon?
|
148 |
-
|
149 |
-
# Thumbnails
|
150 |
-
._*
|
151 |
-
|
152 |
-
# Files that might appear in the root of a volume
|
153 |
-
.DocumentRevisions-V100
|
154 |
-
.fseventsd
|
155 |
-
.Spotlight-V100
|
156 |
-
.TemporaryItems
|
157 |
-
.Trashes
|
158 |
-
.VolumeIcon.icns
|
159 |
-
.com.apple.timemachine.donotpresent
|
160 |
-
|
161 |
-
# Directories potentially created on remote AFP share
|
162 |
-
.AppleDB
|
163 |
-
.AppleDesktop
|
164 |
-
Network Trash Folder
|
165 |
-
Temporary Items
|
166 |
-
.apdisk
|
167 |
-
|
168 |
-
|
169 |
-
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
170 |
-
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
171 |
-
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
172 |
-
|
173 |
-
# User-specific stuff:
|
174 |
-
.idea/*
|
175 |
-
.idea/**/workspace.xml
|
176 |
-
.idea/**/tasks.xml
|
177 |
-
.idea/dictionaries
|
178 |
-
.html # Bokeh Plots
|
179 |
-
.pg # TensorFlow Frozen Graphs
|
180 |
-
.avi # videos
|
181 |
-
|
182 |
-
# Sensitive or high-churn files:
|
183 |
-
.idea/**/dataSources/
|
184 |
-
.idea/**/dataSources.ids
|
185 |
-
.idea/**/dataSources.local.xml
|
186 |
-
.idea/**/sqlDataSources.xml
|
187 |
-
.idea/**/dynamic.xml
|
188 |
-
.idea/**/uiDesigner.xml
|
189 |
-
|
190 |
-
# Gradle:
|
191 |
-
.idea/**/gradle.xml
|
192 |
-
.idea/**/libraries
|
193 |
-
|
194 |
-
# CMake
|
195 |
-
cmake-build-debug/
|
196 |
-
cmake-build-release/
|
197 |
-
|
198 |
-
# Mongo Explorer plugin:
|
199 |
-
.idea/**/mongoSettings.xml
|
200 |
-
|
201 |
-
## File-based project format:
|
202 |
-
*.iws
|
203 |
-
|
204 |
-
## Plugin-specific files:
|
205 |
-
|
206 |
-
# IntelliJ
|
207 |
-
out/
|
208 |
-
|
209 |
-
# mpeltonen/sbt-idea plugin
|
210 |
-
.idea_modules/
|
211 |
-
|
212 |
-
# JIRA plugin
|
213 |
-
atlassian-ide-plugin.xml
|
214 |
-
|
215 |
-
# Cursive Clojure plugin
|
216 |
-
.idea/replstate.xml
|
217 |
-
|
218 |
-
# Crashlytics plugin (for Android Studio and IntelliJ)
|
219 |
-
com_crashlytics_export_strings.xml
|
220 |
-
crashlytics.properties
|
221 |
-
crashlytics-build.properties
|
222 |
-
fabric.properties
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/.gitattributes
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
# this drop notebooks from GitHub language stats
|
2 |
-
*.ipynb linguist-vendored
|
|
|
|
|
|
ultralytics/yolov5/.gitignore
DELETED
@@ -1,256 +0,0 @@
|
|
1 |
-
# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
|
2 |
-
*.jpg
|
3 |
-
*.jpeg
|
4 |
-
*.png
|
5 |
-
*.bmp
|
6 |
-
*.tif
|
7 |
-
*.tiff
|
8 |
-
*.heic
|
9 |
-
*.JPG
|
10 |
-
*.JPEG
|
11 |
-
*.PNG
|
12 |
-
*.BMP
|
13 |
-
*.TIF
|
14 |
-
*.TIFF
|
15 |
-
*.HEIC
|
16 |
-
*.mp4
|
17 |
-
*.mov
|
18 |
-
*.MOV
|
19 |
-
*.avi
|
20 |
-
*.data
|
21 |
-
*.json
|
22 |
-
*.cfg
|
23 |
-
!setup.cfg
|
24 |
-
!cfg/yolov3*.cfg
|
25 |
-
|
26 |
-
storage.googleapis.com
|
27 |
-
runs/*
|
28 |
-
data/*
|
29 |
-
data/images/*
|
30 |
-
!data/*.yaml
|
31 |
-
!data/hyps
|
32 |
-
!data/scripts
|
33 |
-
!data/images
|
34 |
-
!data/images/zidane.jpg
|
35 |
-
!data/images/bus.jpg
|
36 |
-
!data/*.sh
|
37 |
-
|
38 |
-
results*.csv
|
39 |
-
|
40 |
-
# Datasets -------------------------------------------------------------------------------------------------------------
|
41 |
-
coco/
|
42 |
-
coco128/
|
43 |
-
VOC/
|
44 |
-
|
45 |
-
# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
|
46 |
-
*.m~
|
47 |
-
*.mat
|
48 |
-
!targets*.mat
|
49 |
-
|
50 |
-
# Neural Network weights -----------------------------------------------------------------------------------------------
|
51 |
-
*.weights
|
52 |
-
*.pt
|
53 |
-
*.pb
|
54 |
-
*.onnx
|
55 |
-
*.engine
|
56 |
-
*.mlmodel
|
57 |
-
*.torchscript
|
58 |
-
*.tflite
|
59 |
-
*.h5
|
60 |
-
*_saved_model/
|
61 |
-
*_web_model/
|
62 |
-
*_openvino_model/
|
63 |
-
darknet53.conv.74
|
64 |
-
yolov3-tiny.conv.15
|
65 |
-
|
66 |
-
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
67 |
-
# Byte-compiled / optimized / DLL files
|
68 |
-
__pycache__/
|
69 |
-
*.py[cod]
|
70 |
-
*$py.class
|
71 |
-
|
72 |
-
# C extensions
|
73 |
-
*.so
|
74 |
-
|
75 |
-
# Distribution / packaging
|
76 |
-
.Python
|
77 |
-
env/
|
78 |
-
build/
|
79 |
-
develop-eggs/
|
80 |
-
dist/
|
81 |
-
downloads/
|
82 |
-
eggs/
|
83 |
-
.eggs/
|
84 |
-
lib/
|
85 |
-
lib64/
|
86 |
-
parts/
|
87 |
-
sdist/
|
88 |
-
var/
|
89 |
-
wheels/
|
90 |
-
*.egg-info/
|
91 |
-
/wandb/
|
92 |
-
.installed.cfg
|
93 |
-
*.egg
|
94 |
-
|
95 |
-
|
96 |
-
# PyInstaller
|
97 |
-
# Usually these files are written by a python script from a template
|
98 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
99 |
-
*.manifest
|
100 |
-
*.spec
|
101 |
-
|
102 |
-
# Installer logs
|
103 |
-
pip-log.txt
|
104 |
-
pip-delete-this-directory.txt
|
105 |
-
|
106 |
-
# Unit test / coverage reports
|
107 |
-
htmlcov/
|
108 |
-
.tox/
|
109 |
-
.coverage
|
110 |
-
.coverage.*
|
111 |
-
.cache
|
112 |
-
nosetests.xml
|
113 |
-
coverage.xml
|
114 |
-
*.cover
|
115 |
-
.hypothesis/
|
116 |
-
|
117 |
-
# Translations
|
118 |
-
*.mo
|
119 |
-
*.pot
|
120 |
-
|
121 |
-
# Django stuff:
|
122 |
-
*.log
|
123 |
-
local_settings.py
|
124 |
-
|
125 |
-
# Flask stuff:
|
126 |
-
instance/
|
127 |
-
.webassets-cache
|
128 |
-
|
129 |
-
# Scrapy stuff:
|
130 |
-
.scrapy
|
131 |
-
|
132 |
-
# Sphinx documentation
|
133 |
-
docs/_build/
|
134 |
-
|
135 |
-
# PyBuilder
|
136 |
-
target/
|
137 |
-
|
138 |
-
# Jupyter Notebook
|
139 |
-
.ipynb_checkpoints
|
140 |
-
|
141 |
-
# pyenv
|
142 |
-
.python-version
|
143 |
-
|
144 |
-
# celery beat schedule file
|
145 |
-
celerybeat-schedule
|
146 |
-
|
147 |
-
# SageMath parsed files
|
148 |
-
*.sage.py
|
149 |
-
|
150 |
-
# dotenv
|
151 |
-
.env
|
152 |
-
|
153 |
-
# virtualenv
|
154 |
-
.venv*
|
155 |
-
venv*/
|
156 |
-
ENV*/
|
157 |
-
|
158 |
-
# Spyder project settings
|
159 |
-
.spyderproject
|
160 |
-
.spyproject
|
161 |
-
|
162 |
-
# Rope project settings
|
163 |
-
.ropeproject
|
164 |
-
|
165 |
-
# mkdocs documentation
|
166 |
-
/site
|
167 |
-
|
168 |
-
# mypy
|
169 |
-
.mypy_cache/
|
170 |
-
|
171 |
-
|
172 |
-
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
173 |
-
|
174 |
-
# General
|
175 |
-
.DS_Store
|
176 |
-
.AppleDouble
|
177 |
-
.LSOverride
|
178 |
-
|
179 |
-
# Icon must end with two \r
|
180 |
-
Icon
|
181 |
-
Icon?
|
182 |
-
|
183 |
-
# Thumbnails
|
184 |
-
._*
|
185 |
-
|
186 |
-
# Files that might appear in the root of a volume
|
187 |
-
.DocumentRevisions-V100
|
188 |
-
.fseventsd
|
189 |
-
.Spotlight-V100
|
190 |
-
.TemporaryItems
|
191 |
-
.Trashes
|
192 |
-
.VolumeIcon.icns
|
193 |
-
.com.apple.timemachine.donotpresent
|
194 |
-
|
195 |
-
# Directories potentially created on remote AFP share
|
196 |
-
.AppleDB
|
197 |
-
.AppleDesktop
|
198 |
-
Network Trash Folder
|
199 |
-
Temporary Items
|
200 |
-
.apdisk
|
201 |
-
|
202 |
-
|
203 |
-
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
204 |
-
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
205 |
-
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
206 |
-
|
207 |
-
# User-specific stuff:
|
208 |
-
.idea/*
|
209 |
-
.idea/**/workspace.xml
|
210 |
-
.idea/**/tasks.xml
|
211 |
-
.idea/dictionaries
|
212 |
-
.html # Bokeh Plots
|
213 |
-
.pg # TensorFlow Frozen Graphs
|
214 |
-
.avi # videos
|
215 |
-
|
216 |
-
# Sensitive or high-churn files:
|
217 |
-
.idea/**/dataSources/
|
218 |
-
.idea/**/dataSources.ids
|
219 |
-
.idea/**/dataSources.local.xml
|
220 |
-
.idea/**/sqlDataSources.xml
|
221 |
-
.idea/**/dynamic.xml
|
222 |
-
.idea/**/uiDesigner.xml
|
223 |
-
|
224 |
-
# Gradle:
|
225 |
-
.idea/**/gradle.xml
|
226 |
-
.idea/**/libraries
|
227 |
-
|
228 |
-
# CMake
|
229 |
-
cmake-build-debug/
|
230 |
-
cmake-build-release/
|
231 |
-
|
232 |
-
# Mongo Explorer plugin:
|
233 |
-
.idea/**/mongoSettings.xml
|
234 |
-
|
235 |
-
## File-based project format:
|
236 |
-
*.iws
|
237 |
-
|
238 |
-
## Plugin-specific files:
|
239 |
-
|
240 |
-
# IntelliJ
|
241 |
-
out/
|
242 |
-
|
243 |
-
# mpeltonen/sbt-idea plugin
|
244 |
-
.idea_modules/
|
245 |
-
|
246 |
-
# JIRA plugin
|
247 |
-
atlassian-ide-plugin.xml
|
248 |
-
|
249 |
-
# Cursive Clojure plugin
|
250 |
-
.idea/replstate.xml
|
251 |
-
|
252 |
-
# Crashlytics plugin (for Android Studio and IntelliJ)
|
253 |
-
com_crashlytics_export_strings.xml
|
254 |
-
crashlytics.properties
|
255 |
-
crashlytics-build.properties
|
256 |
-
fabric.properties
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/.pre-commit-config.yaml
DELETED
@@ -1,66 +0,0 @@
|
|
1 |
-
# Define hooks for code formations
|
2 |
-
# Will be applied on any updated commit files if a user has installed and linked commit hook
|
3 |
-
|
4 |
-
default_language_version:
|
5 |
-
python: python3.8
|
6 |
-
|
7 |
-
# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
|
8 |
-
ci:
|
9 |
-
autofix_prs: true
|
10 |
-
autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
|
11 |
-
autoupdate_schedule: quarterly
|
12 |
-
# submodules: true
|
13 |
-
|
14 |
-
repos:
|
15 |
-
- repo: https://github.com/pre-commit/pre-commit-hooks
|
16 |
-
rev: v4.1.0
|
17 |
-
hooks:
|
18 |
-
- id: end-of-file-fixer
|
19 |
-
- id: trailing-whitespace
|
20 |
-
- id: check-case-conflict
|
21 |
-
- id: check-yaml
|
22 |
-
- id: check-toml
|
23 |
-
- id: pretty-format-json
|
24 |
-
- id: check-docstring-first
|
25 |
-
|
26 |
-
- repo: https://github.com/asottile/pyupgrade
|
27 |
-
rev: v2.31.0
|
28 |
-
hooks:
|
29 |
-
- id: pyupgrade
|
30 |
-
args: [--py36-plus]
|
31 |
-
name: Upgrade code
|
32 |
-
|
33 |
-
- repo: https://github.com/PyCQA/isort
|
34 |
-
rev: 5.10.1
|
35 |
-
hooks:
|
36 |
-
- id: isort
|
37 |
-
name: Sort imports
|
38 |
-
|
39 |
-
# TODO
|
40 |
-
#- repo: https://github.com/pre-commit/mirrors-yapf
|
41 |
-
# rev: v0.31.0
|
42 |
-
# hooks:
|
43 |
-
# - id: yapf
|
44 |
-
# name: formatting
|
45 |
-
|
46 |
-
# TODO
|
47 |
-
#- repo: https://github.com/executablebooks/mdformat
|
48 |
-
# rev: 0.7.7
|
49 |
-
# hooks:
|
50 |
-
# - id: mdformat
|
51 |
-
# additional_dependencies:
|
52 |
-
# - mdformat-gfm
|
53 |
-
# - mdformat-black
|
54 |
-
# - mdformat_frontmatter
|
55 |
-
|
56 |
-
# TODO
|
57 |
-
#- repo: https://github.com/asottile/yesqa
|
58 |
-
# rev: v1.2.3
|
59 |
-
# hooks:
|
60 |
-
# - id: yesqa
|
61 |
-
|
62 |
-
- repo: https://github.com/PyCQA/flake8
|
63 |
-
rev: 4.0.1
|
64 |
-
hooks:
|
65 |
-
- id: flake8
|
66 |
-
name: PEP8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/CONTRIBUTING.md
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
## Contributing to YOLOv5 🚀
|
2 |
-
|
3 |
-
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
|
4 |
-
|
5 |
-
- Reporting a bug
|
6 |
-
- Discussing the current state of the code
|
7 |
-
- Submitting a fix
|
8 |
-
- Proposing a new feature
|
9 |
-
- Becoming a maintainer
|
10 |
-
|
11 |
-
YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
|
12 |
-
helping push the frontiers of what's possible in AI 😃!
|
13 |
-
|
14 |
-
## Submitting a Pull Request (PR) 🛠️
|
15 |
-
|
16 |
-
Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
|
17 |
-
|
18 |
-
### 1. Select File to Update
|
19 |
-
|
20 |
-
Select `requirements.txt` to update by clicking on it in GitHub.
|
21 |
-
<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
|
22 |
-
|
23 |
-
### 2. Click 'Edit this file'
|
24 |
-
|
25 |
-
Button is in top-right corner.
|
26 |
-
<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
|
27 |
-
|
28 |
-
### 3. Make Changes
|
29 |
-
|
30 |
-
Change `matplotlib` version from `3.2.2` to `3.3`.
|
31 |
-
<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
|
32 |
-
|
33 |
-
### 4. Preview Changes and Submit PR
|
34 |
-
|
35 |
-
Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
|
36 |
-
for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
|
37 |
-
changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
|
38 |
-
<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
|
39 |
-
|
40 |
-
### PR recommendations
|
41 |
-
|
42 |
-
To allow your work to be integrated as seamlessly as possible, we advise you to:
|
43 |
-
|
44 |
-
- ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an
|
45 |
-
automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may
|
46 |
-
be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name
|
47 |
-
of your local branch:
|
48 |
-
|
49 |
-
```bash
|
50 |
-
git remote add upstream https://github.com/ultralytics/yolov5.git
|
51 |
-
git fetch upstream
|
52 |
-
# git checkout feature # <--- replace 'feature' with local branch name
|
53 |
-
git merge upstream/master
|
54 |
-
git push -u origin -f
|
55 |
-
```
|
56 |
-
|
57 |
-
- ✅ Verify all Continuous Integration (CI) **checks are passing**.
|
58 |
-
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
|
59 |
-
but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
|
60 |
-
|
61 |
-
## Submitting a Bug Report 🐛
|
62 |
-
|
63 |
-
If you spot a problem with YOLOv5 please submit a Bug Report!
|
64 |
-
|
65 |
-
For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
|
66 |
-
short guidelines below to help users provide what we need in order to get started.
|
67 |
-
|
68 |
-
When asking a question, people will be better able to provide help if you provide **code** that they can easily
|
69 |
-
understand and use to **reproduce** the problem. This is referred to by community members as creating
|
70 |
-
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
|
71 |
-
the problem should be:
|
72 |
-
|
73 |
-
* ✅ **Minimal** – Use as little code as possible that still produces the same problem
|
74 |
-
* ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
|
75 |
-
* ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
|
76 |
-
|
77 |
-
In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
|
78 |
-
should be:
|
79 |
-
|
80 |
-
* ✅ **Current** – Verify that your code is up-to-date with current
|
81 |
-
GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
|
82 |
-
copy to ensure your problem has not already been resolved by previous commits.
|
83 |
-
* ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
|
84 |
-
repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
|
85 |
-
|
86 |
-
If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **
|
87 |
-
Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
|
88 |
-
a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
|
89 |
-
understand and diagnose your problem.
|
90 |
-
|
91 |
-
## License
|
92 |
-
|
93 |
-
By contributing, you agree that your contributions will be licensed under
|
94 |
-
the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/Dockerfile
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
4 |
-
FROM nvcr.io/nvidia/pytorch:21.10-py3
|
5 |
-
|
6 |
-
# Install linux packages
|
7 |
-
RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
|
8 |
-
|
9 |
-
# Install python dependencies
|
10 |
-
COPY requirements.txt .
|
11 |
-
RUN python -m pip install --upgrade pip
|
12 |
-
RUN pip uninstall -y torch torchvision torchtext
|
13 |
-
RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook \
|
14 |
-
torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
|
15 |
-
# RUN pip install --no-cache -U torch torchvision
|
16 |
-
|
17 |
-
# Create working directory
|
18 |
-
RUN mkdir -p /usr/src/app
|
19 |
-
WORKDIR /usr/src/app
|
20 |
-
|
21 |
-
# Copy contents
|
22 |
-
RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
|
23 |
-
# COPY . /usr/src/app
|
24 |
-
|
25 |
-
# Downloads to user config dir
|
26 |
-
ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/
|
27 |
-
|
28 |
-
# Set environment variables
|
29 |
-
# ENV HOME=/usr/src/app
|
30 |
-
|
31 |
-
|
32 |
-
# Usage Examples -------------------------------------------------------------------------------------------------------
|
33 |
-
|
34 |
-
# Build and Push
|
35 |
-
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
|
36 |
-
|
37 |
-
# Pull and Run
|
38 |
-
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
39 |
-
|
40 |
-
# Pull and Run with local directory access
|
41 |
-
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
|
42 |
-
|
43 |
-
# Kill all
|
44 |
-
# sudo docker kill $(sudo docker ps -q)
|
45 |
-
|
46 |
-
# Kill all image-based
|
47 |
-
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
|
48 |
-
|
49 |
-
# Bash into running container
|
50 |
-
# sudo docker exec -it 5a9b5863d93d bash
|
51 |
-
|
52 |
-
# Bash into stopped container
|
53 |
-
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
|
54 |
-
|
55 |
-
# Clean up
|
56 |
-
# docker system prune -a --volumes
|
57 |
-
|
58 |
-
# Update Ubuntu drivers
|
59 |
-
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
|
60 |
-
|
61 |
-
# DDP test
|
62 |
-
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
|
63 |
-
|
64 |
-
# GCP VM from Image
|
65 |
-
# docker.io/ultralytics/yolov5:latest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/LICENSE
DELETED
@@ -1,674 +0,0 @@
|
|
1 |
-
GNU GENERAL PUBLIC LICENSE
|
2 |
-
Version 3, 29 June 2007
|
3 |
-
|
4 |
-
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
5 |
-
Everyone is permitted to copy and distribute verbatim copies
|
6 |
-
of this license document, but changing it is not allowed.
|
7 |
-
|
8 |
-
Preamble
|
9 |
-
|
10 |
-
The GNU General Public License is a free, copyleft license for
|
11 |
-
software and other kinds of works.
|
12 |
-
|
13 |
-
The licenses for most software and other practical works are designed
|
14 |
-
to take away your freedom to share and change the works. By contrast,
|
15 |
-
the GNU General Public License is intended to guarantee your freedom to
|
16 |
-
share and change all versions of a program--to make sure it remains free
|
17 |
-
software for all its users. We, the Free Software Foundation, use the
|
18 |
-
GNU General Public License for most of our software; it applies also to
|
19 |
-
any other work released this way by its authors. You can apply it to
|
20 |
-
your programs, too.
|
21 |
-
|
22 |
-
When we speak of free software, we are referring to freedom, not
|
23 |
-
price. Our General Public Licenses are designed to make sure that you
|
24 |
-
have the freedom to distribute copies of free software (and charge for
|
25 |
-
them if you wish), that you receive source code or can get it if you
|
26 |
-
want it, that you can change the software or use pieces of it in new
|
27 |
-
free programs, and that you know you can do these things.
|
28 |
-
|
29 |
-
To protect your rights, we need to prevent others from denying you
|
30 |
-
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
-
certain responsibilities if you distribute copies of the software, or if
|
32 |
-
you modify it: responsibilities to respect the freedom of others.
|
33 |
-
|
34 |
-
For example, if you distribute copies of such a program, whether
|
35 |
-
gratis or for a fee, you must pass on to the recipients the same
|
36 |
-
freedoms that you received. You must make sure that they, too, receive
|
37 |
-
or can get the source code. And you must show them these terms so they
|
38 |
-
know their rights.
|
39 |
-
|
40 |
-
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
-
(1) assert copyright on the software, and (2) offer you this License
|
42 |
-
giving you legal permission to copy, distribute and/or modify it.
|
43 |
-
|
44 |
-
For the developers' and authors' protection, the GPL clearly explains
|
45 |
-
that there is no warranty for this free software. For both users' and
|
46 |
-
authors' sake, the GPL requires that modified versions be marked as
|
47 |
-
changed, so that their problems will not be attributed erroneously to
|
48 |
-
authors of previous versions.
|
49 |
-
|
50 |
-
Some devices are designed to deny users access to install or run
|
51 |
-
modified versions of the software inside them, although the manufacturer
|
52 |
-
can do so. This is fundamentally incompatible with the aim of
|
53 |
-
protecting users' freedom to change the software. The systematic
|
54 |
-
pattern of such abuse occurs in the area of products for individuals to
|
55 |
-
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
-
have designed this version of the GPL to prohibit the practice for those
|
57 |
-
products. If such problems arise substantially in other domains, we
|
58 |
-
stand ready to extend this provision to those domains in future versions
|
59 |
-
of the GPL, as needed to protect the freedom of users.
|
60 |
-
|
61 |
-
Finally, every program is threatened constantly by software patents.
|
62 |
-
States should not allow patents to restrict development and use of
|
63 |
-
software on general-purpose computers, but in those that do, we wish to
|
64 |
-
avoid the special danger that patents applied to a free program could
|
65 |
-
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
-
patents cannot be used to render the program non-free.
|
67 |
-
|
68 |
-
The precise terms and conditions for copying, distribution and
|
69 |
-
modification follow.
|
70 |
-
|
71 |
-
TERMS AND CONDITIONS
|
72 |
-
|
73 |
-
0. Definitions.
|
74 |
-
|
75 |
-
"This License" refers to version 3 of the GNU General Public License.
|
76 |
-
|
77 |
-
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
-
works, such as semiconductor masks.
|
79 |
-
|
80 |
-
"The Program" refers to any copyrightable work licensed under this
|
81 |
-
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
-
"recipients" may be individuals or organizations.
|
83 |
-
|
84 |
-
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
-
in a fashion requiring copyright permission, other than the making of an
|
86 |
-
exact copy. The resulting work is called a "modified version" of the
|
87 |
-
earlier work or a work "based on" the earlier work.
|
88 |
-
|
89 |
-
A "covered work" means either the unmodified Program or a work based
|
90 |
-
on the Program.
|
91 |
-
|
92 |
-
To "propagate" a work means to do anything with it that, without
|
93 |
-
permission, would make you directly or secondarily liable for
|
94 |
-
infringement under applicable copyright law, except executing it on a
|
95 |
-
computer or modifying a private copy. Propagation includes copying,
|
96 |
-
distribution (with or without modification), making available to the
|
97 |
-
public, and in some countries other activities as well.
|
98 |
-
|
99 |
-
To "convey" a work means any kind of propagation that enables other
|
100 |
-
parties to make or receive copies. Mere interaction with a user through
|
101 |
-
a computer network, with no transfer of a copy, is not conveying.
|
102 |
-
|
103 |
-
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
-
to the extent that it includes a convenient and prominently visible
|
105 |
-
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
-
tells the user that there is no warranty for the work (except to the
|
107 |
-
extent that warranties are provided), that licensees may convey the
|
108 |
-
work under this License, and how to view a copy of this License. If
|
109 |
-
the interface presents a list of user commands or options, such as a
|
110 |
-
menu, a prominent item in the list meets this criterion.
|
111 |
-
|
112 |
-
1. Source Code.
|
113 |
-
|
114 |
-
The "source code" for a work means the preferred form of the work
|
115 |
-
for making modifications to it. "Object code" means any non-source
|
116 |
-
form of a work.
|
117 |
-
|
118 |
-
A "Standard Interface" means an interface that either is an official
|
119 |
-
standard defined by a recognized standards body, or, in the case of
|
120 |
-
interfaces specified for a particular programming language, one that
|
121 |
-
is widely used among developers working in that language.
|
122 |
-
|
123 |
-
The "System Libraries" of an executable work include anything, other
|
124 |
-
than the work as a whole, that (a) is included in the normal form of
|
125 |
-
packaging a Major Component, but which is not part of that Major
|
126 |
-
Component, and (b) serves only to enable use of the work with that
|
127 |
-
Major Component, or to implement a Standard Interface for which an
|
128 |
-
implementation is available to the public in source code form. A
|
129 |
-
"Major Component", in this context, means a major essential component
|
130 |
-
(kernel, window system, and so on) of the specific operating system
|
131 |
-
(if any) on which the executable work runs, or a compiler used to
|
132 |
-
produce the work, or an object code interpreter used to run it.
|
133 |
-
|
134 |
-
The "Corresponding Source" for a work in object code form means all
|
135 |
-
the source code needed to generate, install, and (for an executable
|
136 |
-
work) run the object code and to modify the work, including scripts to
|
137 |
-
control those activities. However, it does not include the work's
|
138 |
-
System Libraries, or general-purpose tools or generally available free
|
139 |
-
programs which are used unmodified in performing those activities but
|
140 |
-
which are not part of the work. For example, Corresponding Source
|
141 |
-
includes interface definition files associated with source files for
|
142 |
-
the work, and the source code for shared libraries and dynamically
|
143 |
-
linked subprograms that the work is specifically designed to require,
|
144 |
-
such as by intimate data communication or control flow between those
|
145 |
-
subprograms and other parts of the work.
|
146 |
-
|
147 |
-
The Corresponding Source need not include anything that users
|
148 |
-
can regenerate automatically from other parts of the Corresponding
|
149 |
-
Source.
|
150 |
-
|
151 |
-
The Corresponding Source for a work in source code form is that
|
152 |
-
same work.
|
153 |
-
|
154 |
-
2. Basic Permissions.
|
155 |
-
|
156 |
-
All rights granted under this License are granted for the term of
|
157 |
-
copyright on the Program, and are irrevocable provided the stated
|
158 |
-
conditions are met. This License explicitly affirms your unlimited
|
159 |
-
permission to run the unmodified Program. The output from running a
|
160 |
-
covered work is covered by this License only if the output, given its
|
161 |
-
content, constitutes a covered work. This License acknowledges your
|
162 |
-
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
-
|
164 |
-
You may make, run and propagate covered works that you do not
|
165 |
-
convey, without conditions so long as your license otherwise remains
|
166 |
-
in force. You may convey covered works to others for the sole purpose
|
167 |
-
of having them make modifications exclusively for you, or provide you
|
168 |
-
with facilities for running those works, provided that you comply with
|
169 |
-
the terms of this License in conveying all material for which you do
|
170 |
-
not control copyright. Those thus making or running the covered works
|
171 |
-
for you must do so exclusively on your behalf, under your direction
|
172 |
-
and control, on terms that prohibit them from making any copies of
|
173 |
-
your copyrighted material outside their relationship with you.
|
174 |
-
|
175 |
-
Conveying under any other circumstances is permitted solely under
|
176 |
-
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
-
makes it unnecessary.
|
178 |
-
|
179 |
-
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
-
|
181 |
-
No covered work shall be deemed part of an effective technological
|
182 |
-
measure under any applicable law fulfilling obligations under article
|
183 |
-
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
-
similar laws prohibiting or restricting circumvention of such
|
185 |
-
measures.
|
186 |
-
|
187 |
-
When you convey a covered work, you waive any legal power to forbid
|
188 |
-
circumvention of technological measures to the extent such circumvention
|
189 |
-
is effected by exercising rights under this License with respect to
|
190 |
-
the covered work, and you disclaim any intention to limit operation or
|
191 |
-
modification of the work as a means of enforcing, against the work's
|
192 |
-
users, your or third parties' legal rights to forbid circumvention of
|
193 |
-
technological measures.
|
194 |
-
|
195 |
-
4. Conveying Verbatim Copies.
|
196 |
-
|
197 |
-
You may convey verbatim copies of the Program's source code as you
|
198 |
-
receive it, in any medium, provided that you conspicuously and
|
199 |
-
appropriately publish on each copy an appropriate copyright notice;
|
200 |
-
keep intact all notices stating that this License and any
|
201 |
-
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
-
keep intact all notices of the absence of any warranty; and give all
|
203 |
-
recipients a copy of this License along with the Program.
|
204 |
-
|
205 |
-
You may charge any price or no price for each copy that you convey,
|
206 |
-
and you may offer support or warranty protection for a fee.
|
207 |
-
|
208 |
-
5. Conveying Modified Source Versions.
|
209 |
-
|
210 |
-
You may convey a work based on the Program, or the modifications to
|
211 |
-
produce it from the Program, in the form of source code under the
|
212 |
-
terms of section 4, provided that you also meet all of these conditions:
|
213 |
-
|
214 |
-
a) The work must carry prominent notices stating that you modified
|
215 |
-
it, and giving a relevant date.
|
216 |
-
|
217 |
-
b) The work must carry prominent notices stating that it is
|
218 |
-
released under this License and any conditions added under section
|
219 |
-
7. This requirement modifies the requirement in section 4 to
|
220 |
-
"keep intact all notices".
|
221 |
-
|
222 |
-
c) You must license the entire work, as a whole, under this
|
223 |
-
License to anyone who comes into possession of a copy. This
|
224 |
-
License will therefore apply, along with any applicable section 7
|
225 |
-
additional terms, to the whole of the work, and all its parts,
|
226 |
-
regardless of how they are packaged. This License gives no
|
227 |
-
permission to license the work in any other way, but it does not
|
228 |
-
invalidate such permission if you have separately received it.
|
229 |
-
|
230 |
-
d) If the work has interactive user interfaces, each must display
|
231 |
-
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
-
interfaces that do not display Appropriate Legal Notices, your
|
233 |
-
work need not make them do so.
|
234 |
-
|
235 |
-
A compilation of a covered work with other separate and independent
|
236 |
-
works, which are not by their nature extensions of the covered work,
|
237 |
-
and which are not combined with it such as to form a larger program,
|
238 |
-
in or on a volume of a storage or distribution medium, is called an
|
239 |
-
"aggregate" if the compilation and its resulting copyright are not
|
240 |
-
used to limit the access or legal rights of the compilation's users
|
241 |
-
beyond what the individual works permit. Inclusion of a covered work
|
242 |
-
in an aggregate does not cause this License to apply to the other
|
243 |
-
parts of the aggregate.
|
244 |
-
|
245 |
-
6. Conveying Non-Source Forms.
|
246 |
-
|
247 |
-
You may convey a covered work in object code form under the terms
|
248 |
-
of sections 4 and 5, provided that you also convey the
|
249 |
-
machine-readable Corresponding Source under the terms of this License,
|
250 |
-
in one of these ways:
|
251 |
-
|
252 |
-
a) Convey the object code in, or embodied in, a physical product
|
253 |
-
(including a physical distribution medium), accompanied by the
|
254 |
-
Corresponding Source fixed on a durable physical medium
|
255 |
-
customarily used for software interchange.
|
256 |
-
|
257 |
-
b) Convey the object code in, or embodied in, a physical product
|
258 |
-
(including a physical distribution medium), accompanied by a
|
259 |
-
written offer, valid for at least three years and valid for as
|
260 |
-
long as you offer spare parts or customer support for that product
|
261 |
-
model, to give anyone who possesses the object code either (1) a
|
262 |
-
copy of the Corresponding Source for all the software in the
|
263 |
-
product that is covered by this License, on a durable physical
|
264 |
-
medium customarily used for software interchange, for a price no
|
265 |
-
more than your reasonable cost of physically performing this
|
266 |
-
conveying of source, or (2) access to copy the
|
267 |
-
Corresponding Source from a network server at no charge.
|
268 |
-
|
269 |
-
c) Convey individual copies of the object code with a copy of the
|
270 |
-
written offer to provide the Corresponding Source. This
|
271 |
-
alternative is allowed only occasionally and noncommercially, and
|
272 |
-
only if you received the object code with such an offer, in accord
|
273 |
-
with subsection 6b.
|
274 |
-
|
275 |
-
d) Convey the object code by offering access from a designated
|
276 |
-
place (gratis or for a charge), and offer equivalent access to the
|
277 |
-
Corresponding Source in the same way through the same place at no
|
278 |
-
further charge. You need not require recipients to copy the
|
279 |
-
Corresponding Source along with the object code. If the place to
|
280 |
-
copy the object code is a network server, the Corresponding Source
|
281 |
-
may be on a different server (operated by you or a third party)
|
282 |
-
that supports equivalent copying facilities, provided you maintain
|
283 |
-
clear directions next to the object code saying where to find the
|
284 |
-
Corresponding Source. Regardless of what server hosts the
|
285 |
-
Corresponding Source, you remain obligated to ensure that it is
|
286 |
-
available for as long as needed to satisfy these requirements.
|
287 |
-
|
288 |
-
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
-
you inform other peers where the object code and Corresponding
|
290 |
-
Source of the work are being offered to the general public at no
|
291 |
-
charge under subsection 6d.
|
292 |
-
|
293 |
-
A separable portion of the object code, whose source code is excluded
|
294 |
-
from the Corresponding Source as a System Library, need not be
|
295 |
-
included in conveying the object code work.
|
296 |
-
|
297 |
-
A "User Product" is either (1) a "consumer product", which means any
|
298 |
-
tangible personal property which is normally used for personal, family,
|
299 |
-
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
-
into a dwelling. In determining whether a product is a consumer product,
|
301 |
-
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
-
product received by a particular user, "normally used" refers to a
|
303 |
-
typical or common use of that class of product, regardless of the status
|
304 |
-
of the particular user or of the way in which the particular user
|
305 |
-
actually uses, or expects or is expected to use, the product. A product
|
306 |
-
is a consumer product regardless of whether the product has substantial
|
307 |
-
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
-
the only significant mode of use of the product.
|
309 |
-
|
310 |
-
"Installation Information" for a User Product means any methods,
|
311 |
-
procedures, authorization keys, or other information required to install
|
312 |
-
and execute modified versions of a covered work in that User Product from
|
313 |
-
a modified version of its Corresponding Source. The information must
|
314 |
-
suffice to ensure that the continued functioning of the modified object
|
315 |
-
code is in no case prevented or interfered with solely because
|
316 |
-
modification has been made.
|
317 |
-
|
318 |
-
If you convey an object code work under this section in, or with, or
|
319 |
-
specifically for use in, a User Product, and the conveying occurs as
|
320 |
-
part of a transaction in which the right of possession and use of the
|
321 |
-
User Product is transferred to the recipient in perpetuity or for a
|
322 |
-
fixed term (regardless of how the transaction is characterized), the
|
323 |
-
Corresponding Source conveyed under this section must be accompanied
|
324 |
-
by the Installation Information. But this requirement does not apply
|
325 |
-
if neither you nor any third party retains the ability to install
|
326 |
-
modified object code on the User Product (for example, the work has
|
327 |
-
been installed in ROM).
|
328 |
-
|
329 |
-
The requirement to provide Installation Information does not include a
|
330 |
-
requirement to continue to provide support service, warranty, or updates
|
331 |
-
for a work that has been modified or installed by the recipient, or for
|
332 |
-
the User Product in which it has been modified or installed. Access to a
|
333 |
-
network may be denied when the modification itself materially and
|
334 |
-
adversely affects the operation of the network or violates the rules and
|
335 |
-
protocols for communication across the network.
|
336 |
-
|
337 |
-
Corresponding Source conveyed, and Installation Information provided,
|
338 |
-
in accord with this section must be in a format that is publicly
|
339 |
-
documented (and with an implementation available to the public in
|
340 |
-
source code form), and must require no special password or key for
|
341 |
-
unpacking, reading or copying.
|
342 |
-
|
343 |
-
7. Additional Terms.
|
344 |
-
|
345 |
-
"Additional permissions" are terms that supplement the terms of this
|
346 |
-
License by making exceptions from one or more of its conditions.
|
347 |
-
Additional permissions that are applicable to the entire Program shall
|
348 |
-
be treated as though they were included in this License, to the extent
|
349 |
-
that they are valid under applicable law. If additional permissions
|
350 |
-
apply only to part of the Program, that part may be used separately
|
351 |
-
under those permissions, but the entire Program remains governed by
|
352 |
-
this License without regard to the additional permissions.
|
353 |
-
|
354 |
-
When you convey a copy of a covered work, you may at your option
|
355 |
-
remove any additional permissions from that copy, or from any part of
|
356 |
-
it. (Additional permissions may be written to require their own
|
357 |
-
removal in certain cases when you modify the work.) You may place
|
358 |
-
additional permissions on material, added by you to a covered work,
|
359 |
-
for which you have or can give appropriate copyright permission.
|
360 |
-
|
361 |
-
Notwithstanding any other provision of this License, for material you
|
362 |
-
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
-
that material) supplement the terms of this License with terms:
|
364 |
-
|
365 |
-
a) Disclaiming warranty or limiting liability differently from the
|
366 |
-
terms of sections 15 and 16 of this License; or
|
367 |
-
|
368 |
-
b) Requiring preservation of specified reasonable legal notices or
|
369 |
-
author attributions in that material or in the Appropriate Legal
|
370 |
-
Notices displayed by works containing it; or
|
371 |
-
|
372 |
-
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
-
requiring that modified versions of such material be marked in
|
374 |
-
reasonable ways as different from the original version; or
|
375 |
-
|
376 |
-
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
-
authors of the material; or
|
378 |
-
|
379 |
-
e) Declining to grant rights under trademark law for use of some
|
380 |
-
trade names, trademarks, or service marks; or
|
381 |
-
|
382 |
-
f) Requiring indemnification of licensors and authors of that
|
383 |
-
material by anyone who conveys the material (or modified versions of
|
384 |
-
it) with contractual assumptions of liability to the recipient, for
|
385 |
-
any liability that these contractual assumptions directly impose on
|
386 |
-
those licensors and authors.
|
387 |
-
|
388 |
-
All other non-permissive additional terms are considered "further
|
389 |
-
restrictions" within the meaning of section 10. If the Program as you
|
390 |
-
received it, or any part of it, contains a notice stating that it is
|
391 |
-
governed by this License along with a term that is a further
|
392 |
-
restriction, you may remove that term. If a license document contains
|
393 |
-
a further restriction but permits relicensing or conveying under this
|
394 |
-
License, you may add to a covered work material governed by the terms
|
395 |
-
of that license document, provided that the further restriction does
|
396 |
-
not survive such relicensing or conveying.
|
397 |
-
|
398 |
-
If you add terms to a covered work in accord with this section, you
|
399 |
-
must place, in the relevant source files, a statement of the
|
400 |
-
additional terms that apply to those files, or a notice indicating
|
401 |
-
where to find the applicable terms.
|
402 |
-
|
403 |
-
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
-
form of a separately written license, or stated as exceptions;
|
405 |
-
the above requirements apply either way.
|
406 |
-
|
407 |
-
8. Termination.
|
408 |
-
|
409 |
-
You may not propagate or modify a covered work except as expressly
|
410 |
-
provided under this License. Any attempt otherwise to propagate or
|
411 |
-
modify it is void, and will automatically terminate your rights under
|
412 |
-
this License (including any patent licenses granted under the third
|
413 |
-
paragraph of section 11).
|
414 |
-
|
415 |
-
However, if you cease all violation of this License, then your
|
416 |
-
license from a particular copyright holder is reinstated (a)
|
417 |
-
provisionally, unless and until the copyright holder explicitly and
|
418 |
-
finally terminates your license, and (b) permanently, if the copyright
|
419 |
-
holder fails to notify you of the violation by some reasonable means
|
420 |
-
prior to 60 days after the cessation.
|
421 |
-
|
422 |
-
Moreover, your license from a particular copyright holder is
|
423 |
-
reinstated permanently if the copyright holder notifies you of the
|
424 |
-
violation by some reasonable means, this is the first time you have
|
425 |
-
received notice of violation of this License (for any work) from that
|
426 |
-
copyright holder, and you cure the violation prior to 30 days after
|
427 |
-
your receipt of the notice.
|
428 |
-
|
429 |
-
Termination of your rights under this section does not terminate the
|
430 |
-
licenses of parties who have received copies or rights from you under
|
431 |
-
this License. If your rights have been terminated and not permanently
|
432 |
-
reinstated, you do not qualify to receive new licenses for the same
|
433 |
-
material under section 10.
|
434 |
-
|
435 |
-
9. Acceptance Not Required for Having Copies.
|
436 |
-
|
437 |
-
You are not required to accept this License in order to receive or
|
438 |
-
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
-
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
-
to receive a copy likewise does not require acceptance. However,
|
441 |
-
nothing other than this License grants you permission to propagate or
|
442 |
-
modify any covered work. These actions infringe copyright if you do
|
443 |
-
not accept this License. Therefore, by modifying or propagating a
|
444 |
-
covered work, you indicate your acceptance of this License to do so.
|
445 |
-
|
446 |
-
10. Automatic Licensing of Downstream Recipients.
|
447 |
-
|
448 |
-
Each time you convey a covered work, the recipient automatically
|
449 |
-
receives a license from the original licensors, to run, modify and
|
450 |
-
propagate that work, subject to this License. You are not responsible
|
451 |
-
for enforcing compliance by third parties with this License.
|
452 |
-
|
453 |
-
An "entity transaction" is a transaction transferring control of an
|
454 |
-
organization, or substantially all assets of one, or subdividing an
|
455 |
-
organization, or merging organizations. If propagation of a covered
|
456 |
-
work results from an entity transaction, each party to that
|
457 |
-
transaction who receives a copy of the work also receives whatever
|
458 |
-
licenses to the work the party's predecessor in interest had or could
|
459 |
-
give under the previous paragraph, plus a right to possession of the
|
460 |
-
Corresponding Source of the work from the predecessor in interest, if
|
461 |
-
the predecessor has it or can get it with reasonable efforts.
|
462 |
-
|
463 |
-
You may not impose any further restrictions on the exercise of the
|
464 |
-
rights granted or affirmed under this License. For example, you may
|
465 |
-
not impose a license fee, royalty, or other charge for exercise of
|
466 |
-
rights granted under this License, and you may not initiate litigation
|
467 |
-
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
-
any patent claim is infringed by making, using, selling, offering for
|
469 |
-
sale, or importing the Program or any portion of it.
|
470 |
-
|
471 |
-
11. Patents.
|
472 |
-
|
473 |
-
A "contributor" is a copyright holder who authorizes use under this
|
474 |
-
License of the Program or a work on which the Program is based. The
|
475 |
-
work thus licensed is called the contributor's "contributor version".
|
476 |
-
|
477 |
-
A contributor's "essential patent claims" are all patent claims
|
478 |
-
owned or controlled by the contributor, whether already acquired or
|
479 |
-
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
-
by this License, of making, using, or selling its contributor version,
|
481 |
-
but do not include claims that would be infringed only as a
|
482 |
-
consequence of further modification of the contributor version. For
|
483 |
-
purposes of this definition, "control" includes the right to grant
|
484 |
-
patent sublicenses in a manner consistent with the requirements of
|
485 |
-
this License.
|
486 |
-
|
487 |
-
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
-
patent license under the contributor's essential patent claims, to
|
489 |
-
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
-
propagate the contents of its contributor version.
|
491 |
-
|
492 |
-
In the following three paragraphs, a "patent license" is any express
|
493 |
-
agreement or commitment, however denominated, not to enforce a patent
|
494 |
-
(such as an express permission to practice a patent or covenant not to
|
495 |
-
sue for patent infringement). To "grant" such a patent license to a
|
496 |
-
party means to make such an agreement or commitment not to enforce a
|
497 |
-
patent against the party.
|
498 |
-
|
499 |
-
If you convey a covered work, knowingly relying on a patent license,
|
500 |
-
and the Corresponding Source of the work is not available for anyone
|
501 |
-
to copy, free of charge and under the terms of this License, through a
|
502 |
-
publicly available network server or other readily accessible means,
|
503 |
-
then you must either (1) cause the Corresponding Source to be so
|
504 |
-
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
-
patent license for this particular work, or (3) arrange, in a manner
|
506 |
-
consistent with the requirements of this License, to extend the patent
|
507 |
-
license to downstream recipients. "Knowingly relying" means you have
|
508 |
-
actual knowledge that, but for the patent license, your conveying the
|
509 |
-
covered work in a country, or your recipient's use of the covered work
|
510 |
-
in a country, would infringe one or more identifiable patents in that
|
511 |
-
country that you have reason to believe are valid.
|
512 |
-
|
513 |
-
If, pursuant to or in connection with a single transaction or
|
514 |
-
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
-
covered work, and grant a patent license to some of the parties
|
516 |
-
receiving the covered work authorizing them to use, propagate, modify
|
517 |
-
or convey a specific copy of the covered work, then the patent license
|
518 |
-
you grant is automatically extended to all recipients of the covered
|
519 |
-
work and works based on it.
|
520 |
-
|
521 |
-
A patent license is "discriminatory" if it does not include within
|
522 |
-
the scope of its coverage, prohibits the exercise of, or is
|
523 |
-
conditioned on the non-exercise of one or more of the rights that are
|
524 |
-
specifically granted under this License. You may not convey a covered
|
525 |
-
work if you are a party to an arrangement with a third party that is
|
526 |
-
in the business of distributing software, under which you make payment
|
527 |
-
to the third party based on the extent of your activity of conveying
|
528 |
-
the work, and under which the third party grants, to any of the
|
529 |
-
parties who would receive the covered work from you, a discriminatory
|
530 |
-
patent license (a) in connection with copies of the covered work
|
531 |
-
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
-
for and in connection with specific products or compilations that
|
533 |
-
contain the covered work, unless you entered into that arrangement,
|
534 |
-
or that patent license was granted, prior to 28 March 2007.
|
535 |
-
|
536 |
-
Nothing in this License shall be construed as excluding or limiting
|
537 |
-
any implied license or other defenses to infringement that may
|
538 |
-
otherwise be available to you under applicable patent law.
|
539 |
-
|
540 |
-
12. No Surrender of Others' Freedom.
|
541 |
-
|
542 |
-
If conditions are imposed on you (whether by court order, agreement or
|
543 |
-
otherwise) that contradict the conditions of this License, they do not
|
544 |
-
excuse you from the conditions of this License. If you cannot convey a
|
545 |
-
covered work so as to satisfy simultaneously your obligations under this
|
546 |
-
License and any other pertinent obligations, then as a consequence you may
|
547 |
-
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
-
to collect a royalty for further conveying from those to whom you convey
|
549 |
-
the Program, the only way you could satisfy both those terms and this
|
550 |
-
License would be to refrain entirely from conveying the Program.
|
551 |
-
|
552 |
-
13. Use with the GNU Affero General Public License.
|
553 |
-
|
554 |
-
Notwithstanding any other provision of this License, you have
|
555 |
-
permission to link or combine any covered work with a work licensed
|
556 |
-
under version 3 of the GNU Affero General Public License into a single
|
557 |
-
combined work, and to convey the resulting work. The terms of this
|
558 |
-
License will continue to apply to the part which is the covered work,
|
559 |
-
but the special requirements of the GNU Affero General Public License,
|
560 |
-
section 13, concerning interaction through a network will apply to the
|
561 |
-
combination as such.
|
562 |
-
|
563 |
-
14. Revised Versions of this License.
|
564 |
-
|
565 |
-
The Free Software Foundation may publish revised and/or new versions of
|
566 |
-
the GNU General Public License from time to time. Such new versions will
|
567 |
-
be similar in spirit to the present version, but may differ in detail to
|
568 |
-
address new problems or concerns.
|
569 |
-
|
570 |
-
Each version is given a distinguishing version number. If the
|
571 |
-
Program specifies that a certain numbered version of the GNU General
|
572 |
-
Public License "or any later version" applies to it, you have the
|
573 |
-
option of following the terms and conditions either of that numbered
|
574 |
-
version or of any later version published by the Free Software
|
575 |
-
Foundation. If the Program does not specify a version number of the
|
576 |
-
GNU General Public License, you may choose any version ever published
|
577 |
-
by the Free Software Foundation.
|
578 |
-
|
579 |
-
If the Program specifies that a proxy can decide which future
|
580 |
-
versions of the GNU General Public License can be used, that proxy's
|
581 |
-
public statement of acceptance of a version permanently authorizes you
|
582 |
-
to choose that version for the Program.
|
583 |
-
|
584 |
-
Later license versions may give you additional or different
|
585 |
-
permissions. However, no additional obligations are imposed on any
|
586 |
-
author or copyright holder as a result of your choosing to follow a
|
587 |
-
later version.
|
588 |
-
|
589 |
-
15. Disclaimer of Warranty.
|
590 |
-
|
591 |
-
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
-
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
-
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
-
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
-
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
-
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
-
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
-
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
-
|
600 |
-
16. Limitation of Liability.
|
601 |
-
|
602 |
-
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
-
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
-
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
-
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
-
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
-
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
-
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
-
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
-
SUCH DAMAGES.
|
611 |
-
|
612 |
-
17. Interpretation of Sections 15 and 16.
|
613 |
-
|
614 |
-
If the disclaimer of warranty and limitation of liability provided
|
615 |
-
above cannot be given local legal effect according to their terms,
|
616 |
-
reviewing courts shall apply local law that most closely approximates
|
617 |
-
an absolute waiver of all civil liability in connection with the
|
618 |
-
Program, unless a warranty or assumption of liability accompanies a
|
619 |
-
copy of the Program in return for a fee.
|
620 |
-
|
621 |
-
END OF TERMS AND CONDITIONS
|
622 |
-
|
623 |
-
How to Apply These Terms to Your New Programs
|
624 |
-
|
625 |
-
If you develop a new program, and you want it to be of the greatest
|
626 |
-
possible use to the public, the best way to achieve this is to make it
|
627 |
-
free software which everyone can redistribute and change under these terms.
|
628 |
-
|
629 |
-
To do so, attach the following notices to the program. It is safest
|
630 |
-
to attach them to the start of each source file to most effectively
|
631 |
-
state the exclusion of warranty; and each file should have at least
|
632 |
-
the "copyright" line and a pointer to where the full notice is found.
|
633 |
-
|
634 |
-
<one line to give the program's name and a brief idea of what it does.>
|
635 |
-
Copyright (C) <year> <name of author>
|
636 |
-
|
637 |
-
This program is free software: you can redistribute it and/or modify
|
638 |
-
it under the terms of the GNU General Public License as published by
|
639 |
-
the Free Software Foundation, either version 3 of the License, or
|
640 |
-
(at your option) any later version.
|
641 |
-
|
642 |
-
This program is distributed in the hope that it will be useful,
|
643 |
-
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
-
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
-
GNU General Public License for more details.
|
646 |
-
|
647 |
-
You should have received a copy of the GNU General Public License
|
648 |
-
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
649 |
-
|
650 |
-
Also add information on how to contact you by electronic and paper mail.
|
651 |
-
|
652 |
-
If the program does terminal interaction, make it output a short
|
653 |
-
notice like this when it starts in an interactive mode:
|
654 |
-
|
655 |
-
<program> Copyright (C) <year> <name of author>
|
656 |
-
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
-
This is free software, and you are welcome to redistribute it
|
658 |
-
under certain conditions; type `show c' for details.
|
659 |
-
|
660 |
-
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
-
parts of the General Public License. Of course, your program's commands
|
662 |
-
might be different; for a GUI interface, you would use an "about box".
|
663 |
-
|
664 |
-
You should also get your employer (if you work as a programmer) or school,
|
665 |
-
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
-
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
-
<http://www.gnu.org/licenses/>.
|
668 |
-
|
669 |
-
The GNU General Public License does not permit incorporating your program
|
670 |
-
into proprietary programs. If your program is a subroutine library, you
|
671 |
-
may consider it more useful to permit linking proprietary applications with
|
672 |
-
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
-
Public License instead of this License. But first, please read
|
674 |
-
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/README.md
DELETED
@@ -1,304 +0,0 @@
|
|
1 |
-
<div align="center">
|
2 |
-
<p>
|
3 |
-
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
|
4 |
-
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
|
5 |
-
</p>
|
6 |
-
<br>
|
7 |
-
<div>
|
8 |
-
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
|
9 |
-
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
|
10 |
-
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
11 |
-
<br>
|
12 |
-
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
13 |
-
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
14 |
-
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
|
15 |
-
</div>
|
16 |
-
|
17 |
-
<br>
|
18 |
-
<p>
|
19 |
-
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
|
20 |
-
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
|
21 |
-
</p>
|
22 |
-
|
23 |
-
<div align="center">
|
24 |
-
<a href="https://github.com/ultralytics">
|
25 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
|
26 |
-
</a>
|
27 |
-
<img width="2%" />
|
28 |
-
<a href="https://www.linkedin.com/company/ultralytics">
|
29 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
|
30 |
-
</a>
|
31 |
-
<img width="2%" />
|
32 |
-
<a href="https://twitter.com/ultralytics">
|
33 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
|
34 |
-
</a>
|
35 |
-
<img width="2%" />
|
36 |
-
<a href="https://www.producthunt.com/@glenn_jocher">
|
37 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
|
38 |
-
</a>
|
39 |
-
<img width="2%" />
|
40 |
-
<a href="https://youtube.com/ultralytics">
|
41 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
|
42 |
-
</a>
|
43 |
-
<img width="2%" />
|
44 |
-
<a href="https://www.facebook.com/ultralytics">
|
45 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
|
46 |
-
</a>
|
47 |
-
<img width="2%" />
|
48 |
-
<a href="https://www.instagram.com/ultralytics/">
|
49 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
|
50 |
-
</a>
|
51 |
-
</div>
|
52 |
-
|
53 |
-
<!--
|
54 |
-
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
|
55 |
-
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
|
56 |
-
-->
|
57 |
-
|
58 |
-
</div>
|
59 |
-
|
60 |
-
## <div align="center">Documentation</div>
|
61 |
-
|
62 |
-
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
|
63 |
-
|
64 |
-
## <div align="center">Quick Start Examples</div>
|
65 |
-
|
66 |
-
<details open>
|
67 |
-
<summary>Install</summary>
|
68 |
-
|
69 |
-
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
|
70 |
-
[**Python>=3.7.0**](https://www.python.org/) environment, including
|
71 |
-
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
|
72 |
-
|
73 |
-
```bash
|
74 |
-
git clone https://github.com/ultralytics/yolov5 # clone
|
75 |
-
cd yolov5
|
76 |
-
pip install -r requirements.txt # install
|
77 |
-
```
|
78 |
-
|
79 |
-
</details>
|
80 |
-
|
81 |
-
<details open>
|
82 |
-
<summary>Inference</summary>
|
83 |
-
|
84 |
-
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
|
85 |
-
. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
|
86 |
-
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
|
87 |
-
|
88 |
-
```python
|
89 |
-
import torch
|
90 |
-
|
91 |
-
# Model
|
92 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
|
93 |
-
|
94 |
-
# Images
|
95 |
-
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
|
96 |
-
|
97 |
-
# Inference
|
98 |
-
results = model(img)
|
99 |
-
|
100 |
-
# Results
|
101 |
-
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
|
102 |
-
```
|
103 |
-
|
104 |
-
</details>
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
<details>
|
109 |
-
<summary>Inference with detect.py</summary>
|
110 |
-
|
111 |
-
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
|
112 |
-
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
|
113 |
-
|
114 |
-
```bash
|
115 |
-
python detect.py --source 0 # webcam
|
116 |
-
img.jpg # image
|
117 |
-
vid.mp4 # video
|
118 |
-
path/ # directory
|
119 |
-
path/*.jpg # glob
|
120 |
-
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
121 |
-
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
122 |
-
```
|
123 |
-
|
124 |
-
</details>
|
125 |
-
|
126 |
-
<details>
|
127 |
-
<summary>Training</summary>
|
128 |
-
|
129 |
-
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
|
130 |
-
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
|
131 |
-
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
|
132 |
-
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
|
133 |
-
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
|
134 |
-
largest `--batch-size` possible, or pass `--batch-size -1` for
|
135 |
-
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
|
136 |
-
|
137 |
-
```bash
|
138 |
-
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
|
139 |
-
yolov5s 64
|
140 |
-
yolov5m 40
|
141 |
-
yolov5l 24
|
142 |
-
yolov5x 16
|
143 |
-
```
|
144 |
-
|
145 |
-
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
|
146 |
-
|
147 |
-
</details>
|
148 |
-
|
149 |
-
<details open>
|
150 |
-
<summary>Tutorials</summary>
|
151 |
-
|
152 |
-
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED
|
153 |
-
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️
|
154 |
-
RECOMMENDED
|
155 |
-
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) 🌟 NEW
|
156 |
-
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) 🌟 NEW
|
157 |
-
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
|
158 |
-
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ NEW
|
159 |
-
* [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
|
160 |
-
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
|
161 |
-
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
|
162 |
-
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
|
163 |
-
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
|
164 |
-
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) ⭐ NEW
|
165 |
-
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
|
166 |
-
|
167 |
-
</details>
|
168 |
-
|
169 |
-
## <div align="center">Environments</div>
|
170 |
-
|
171 |
-
Get started in seconds with our verified environments. Click each icon below for details.
|
172 |
-
|
173 |
-
<div align="center">
|
174 |
-
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
|
175 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
|
176 |
-
</a>
|
177 |
-
<a href="https://www.kaggle.com/ultralytics/yolov5">
|
178 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
|
179 |
-
</a>
|
180 |
-
<a href="https://hub.docker.com/r/ultralytics/yolov5">
|
181 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
|
182 |
-
</a>
|
183 |
-
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
|
184 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
|
185 |
-
</a>
|
186 |
-
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
|
187 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
|
188 |
-
</a>
|
189 |
-
</div>
|
190 |
-
|
191 |
-
## <div align="center">Integrations</div>
|
192 |
-
|
193 |
-
<div align="center">
|
194 |
-
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
|
195 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
|
196 |
-
</a>
|
197 |
-
<a href="https://roboflow.com/?ref=ultralytics">
|
198 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
|
199 |
-
</a>
|
200 |
-
</div>
|
201 |
-
|
202 |
-
|Weights and Biases|Roboflow ⭐ NEW|
|
203 |
-
|:-:|:-:|
|
204 |
-
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
|
205 |
-
|
206 |
-
|
207 |
-
<!-- ## <div align="center">Compete and Win</div>
|
208 |
-
|
209 |
-
We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
|
210 |
-
|
211 |
-
<p align="center">
|
212 |
-
<a href="https://github.com/ultralytics/yolov5/discussions/3213">
|
213 |
-
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
|
214 |
-
</p> -->
|
215 |
-
|
216 |
-
## <div align="center">Why YOLOv5</div>
|
217 |
-
|
218 |
-
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p>
|
219 |
-
<details>
|
220 |
-
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
|
221 |
-
|
222 |
-
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p>
|
223 |
-
</details>
|
224 |
-
<details>
|
225 |
-
<summary>Figure Notes (click to expand)</summary>
|
226 |
-
|
227 |
-
* **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
|
228 |
-
* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
|
229 |
-
* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
|
230 |
-
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
|
231 |
-
</details>
|
232 |
-
|
233 |
-
### Pretrained Checkpoints
|
234 |
-
|
235 |
-
[assets]: https://github.com/ultralytics/yolov5/releases
|
236 |
-
|
237 |
-
[TTA]: https://github.com/ultralytics/yolov5/issues/303
|
238 |
-
|
239 |
-
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
|
240 |
-
|--- |--- |--- |--- |--- |--- |--- |--- |---
|
241 |
-
|[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5**
|
242 |
-
|[YOLOv5s][assets] |640 |37.4 |56.8 |98 |6.4 |0.9 |7.2 |16.5
|
243 |
-
|[YOLOv5m][assets] |640 |45.4 |64.1 |224 |8.2 |1.7 |21.2 |49.0
|
244 |
-
|[YOLOv5l][assets] |640 |49.0 |67.3 |430 |10.1 |2.7 |46.5 |109.1
|
245 |
-
|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
|
246 |
-
| | | | | | | | |
|
247 |
-
|[YOLOv5n6][assets] |1280 |36.0 |54.4 |153 |8.1 |2.1 |3.2 |4.6
|
248 |
-
|[YOLOv5s6][assets] |1280 |44.8 |63.7 |385 |8.2 |3.6 |12.6 |16.8
|
249 |
-
|[YOLOv5m6][assets] |1280 |51.3 |69.3 |887 |11.1 |6.8 |35.7 |50.0
|
250 |
-
|[YOLOv5l6][assets] |1280 |53.7 |71.3 |1784 |15.8 |10.5 |76.8 |111.4
|
251 |
-
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |55.0<br>**55.8** |72.7<br>**72.7** |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
|
252 |
-
|
253 |
-
<details>
|
254 |
-
<summary>Table Notes (click to expand)</summary>
|
255 |
-
|
256 |
-
* All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml).
|
257 |
-
* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
|
258 |
-
* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
|
259 |
-
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
|
260 |
-
|
261 |
-
</details>
|
262 |
-
|
263 |
-
## <div align="center">Contribute</div>
|
264 |
-
|
265 |
-
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
|
266 |
-
|
267 |
-
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>
|
268 |
-
|
269 |
-
## <div align="center">Contact</div>
|
270 |
-
|
271 |
-
For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or
|
272 |
-
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
|
273 |
-
|
274 |
-
<br>
|
275 |
-
|
276 |
-
<div align="center">
|
277 |
-
<a href="https://github.com/ultralytics">
|
278 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
|
279 |
-
</a>
|
280 |
-
<img width="3%" />
|
281 |
-
<a href="https://www.linkedin.com/company/ultralytics">
|
282 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
|
283 |
-
</a>
|
284 |
-
<img width="3%" />
|
285 |
-
<a href="https://twitter.com/ultralytics">
|
286 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
|
287 |
-
</a>
|
288 |
-
<img width="3%" />
|
289 |
-
<a href="https://www.producthunt.com/@glenn_jocher">
|
290 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/>
|
291 |
-
</a>
|
292 |
-
<img width="3%" />
|
293 |
-
<a href="https://youtube.com/ultralytics">
|
294 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
|
295 |
-
</a>
|
296 |
-
<img width="3%" />
|
297 |
-
<a href="https://www.facebook.com/ultralytics">
|
298 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
|
299 |
-
</a>
|
300 |
-
<img width="3%" />
|
301 |
-
<a href="https://www.instagram.com/ultralytics/">
|
302 |
-
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
|
303 |
-
</a>
|
304 |
-
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/Argoverse.yaml
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
|
3 |
-
# Example usage: python train.py --data Argoverse.yaml
|
4 |
-
# parent
|
5 |
-
# ├── yolov5
|
6 |
-
# └── datasets
|
7 |
-
# └── Argoverse ← downloads here
|
8 |
-
|
9 |
-
|
10 |
-
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
-
path: ../datasets/Argoverse # dataset root dir
|
12 |
-
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
13 |
-
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
14 |
-
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
15 |
-
|
16 |
-
# Classes
|
17 |
-
nc: 8 # number of classes
|
18 |
-
names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names
|
19 |
-
|
20 |
-
|
21 |
-
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
22 |
-
download: |
|
23 |
-
import json
|
24 |
-
|
25 |
-
from tqdm import tqdm
|
26 |
-
from utils.general import download, Path
|
27 |
-
|
28 |
-
|
29 |
-
def argoverse2yolo(set):
|
30 |
-
labels = {}
|
31 |
-
a = json.load(open(set, "rb"))
|
32 |
-
for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
|
33 |
-
img_id = annot['image_id']
|
34 |
-
img_name = a['images'][img_id]['name']
|
35 |
-
img_label_name = img_name[:-3] + "txt"
|
36 |
-
|
37 |
-
cls = annot['category_id'] # instance class id
|
38 |
-
x_center, y_center, width, height = annot['bbox']
|
39 |
-
x_center = (x_center + width / 2) / 1920.0 # offset and scale
|
40 |
-
y_center = (y_center + height / 2) / 1200.0 # offset and scale
|
41 |
-
width /= 1920.0 # scale
|
42 |
-
height /= 1200.0 # scale
|
43 |
-
|
44 |
-
img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
|
45 |
-
if not img_dir.exists():
|
46 |
-
img_dir.mkdir(parents=True, exist_ok=True)
|
47 |
-
|
48 |
-
k = str(img_dir / img_label_name)
|
49 |
-
if k not in labels:
|
50 |
-
labels[k] = []
|
51 |
-
labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
|
52 |
-
|
53 |
-
for k in labels:
|
54 |
-
with open(k, "w") as f:
|
55 |
-
f.writelines(labels[k])
|
56 |
-
|
57 |
-
|
58 |
-
# Download
|
59 |
-
dir = Path('../datasets/Argoverse') # dataset root dir
|
60 |
-
urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
|
61 |
-
download(urls, dir=dir, delete=False)
|
62 |
-
|
63 |
-
# Convert
|
64 |
-
annotations_dir = 'Argoverse-HD/annotations/'
|
65 |
-
(dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
|
66 |
-
for d in "train.json", "val.json":
|
67 |
-
argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/GlobalWheat2020.yaml
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
|
3 |
-
# Example usage: python train.py --data GlobalWheat2020.yaml
|
4 |
-
# parent
|
5 |
-
# ├── yolov5
|
6 |
-
# └── datasets
|
7 |
-
# └── GlobalWheat2020 ← downloads here
|
8 |
-
|
9 |
-
|
10 |
-
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
-
path: ../datasets/GlobalWheat2020 # dataset root dir
|
12 |
-
train: # train images (relative to 'path') 3422 images
|
13 |
-
- images/arvalis_1
|
14 |
-
- images/arvalis_2
|
15 |
-
- images/arvalis_3
|
16 |
-
- images/ethz_1
|
17 |
-
- images/rres_1
|
18 |
-
- images/inrae_1
|
19 |
-
- images/usask_1
|
20 |
-
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
|
21 |
-
- images/ethz_1
|
22 |
-
test: # test images (optional) 1276 images
|
23 |
-
- images/utokyo_1
|
24 |
-
- images/utokyo_2
|
25 |
-
- images/nau_1
|
26 |
-
- images/uq_1
|
27 |
-
|
28 |
-
# Classes
|
29 |
-
nc: 1 # number of classes
|
30 |
-
names: ['wheat_head'] # class names
|
31 |
-
|
32 |
-
|
33 |
-
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
34 |
-
download: |
|
35 |
-
from utils.general import download, Path
|
36 |
-
|
37 |
-
|
38 |
-
# Download
|
39 |
-
dir = Path(yaml['path']) # dataset root dir
|
40 |
-
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
|
41 |
-
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
|
42 |
-
download(urls, dir=dir)
|
43 |
-
|
44 |
-
# Make Directories
|
45 |
-
for p in 'annotations', 'images', 'labels':
|
46 |
-
(dir / p).mkdir(parents=True, exist_ok=True)
|
47 |
-
|
48 |
-
# Move
|
49 |
-
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
|
50 |
-
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
|
51 |
-
(dir / p).rename(dir / 'images' / p) # move to /images
|
52 |
-
f = (dir / p).with_suffix('.json') # json file
|
53 |
-
if f.exists():
|
54 |
-
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/Objects365.yaml
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Objects365 dataset https://www.objects365.org/ by Megvii
|
3 |
-
# Example usage: python train.py --data Objects365.yaml
|
4 |
-
# parent
|
5 |
-
# ├── yolov5
|
6 |
-
# └── datasets
|
7 |
-
# └── Objects365 ← downloads here
|
8 |
-
|
9 |
-
|
10 |
-
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
-
path: ../datasets/Objects365 # dataset root dir
|
12 |
-
train: images/train # train images (relative to 'path') 1742289 images
|
13 |
-
val: images/val # val images (relative to 'path') 80000 images
|
14 |
-
test: # test images (optional)
|
15 |
-
|
16 |
-
# Classes
|
17 |
-
nc: 365 # number of classes
|
18 |
-
names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
|
19 |
-
'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
|
20 |
-
'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
|
21 |
-
'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
|
22 |
-
'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
|
23 |
-
'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
|
24 |
-
'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
|
25 |
-
'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
|
26 |
-
'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
|
27 |
-
'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
|
28 |
-
'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
|
29 |
-
'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
|
30 |
-
'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
|
31 |
-
'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
|
32 |
-
'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
|
33 |
-
'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
|
34 |
-
'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
|
35 |
-
'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
|
36 |
-
'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
|
37 |
-
'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
|
38 |
-
'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
|
39 |
-
'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
|
40 |
-
'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
|
41 |
-
'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
|
42 |
-
'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
|
43 |
-
'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
|
44 |
-
'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
|
45 |
-
'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
|
46 |
-
'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
|
47 |
-
'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
|
48 |
-
'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
|
49 |
-
'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
|
50 |
-
'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
|
51 |
-
'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
|
52 |
-
'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
|
53 |
-
'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
|
54 |
-
'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
|
55 |
-
'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
|
56 |
-
'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
|
57 |
-
'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
|
58 |
-
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
|
59 |
-
|
60 |
-
|
61 |
-
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
62 |
-
download: |
|
63 |
-
from pycocotools.coco import COCO
|
64 |
-
from tqdm import tqdm
|
65 |
-
|
66 |
-
from utils.general import Path, download, np, xyxy2xywhn
|
67 |
-
|
68 |
-
|
69 |
-
# Make Directories
|
70 |
-
dir = Path(yaml['path']) # dataset root dir
|
71 |
-
for p in 'images', 'labels':
|
72 |
-
(dir / p).mkdir(parents=True, exist_ok=True)
|
73 |
-
for q in 'train', 'val':
|
74 |
-
(dir / p / q).mkdir(parents=True, exist_ok=True)
|
75 |
-
|
76 |
-
# Train, Val Splits
|
77 |
-
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
|
78 |
-
print(f"Processing {split} in {patches} patches ...")
|
79 |
-
images, labels = dir / 'images' / split, dir / 'labels' / split
|
80 |
-
|
81 |
-
# Download
|
82 |
-
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
|
83 |
-
if split == 'train':
|
84 |
-
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
|
85 |
-
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
|
86 |
-
elif split == 'val':
|
87 |
-
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
|
88 |
-
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
|
89 |
-
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
|
90 |
-
|
91 |
-
# Move
|
92 |
-
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
|
93 |
-
f.rename(images / f.name) # move to /images/{split}
|
94 |
-
|
95 |
-
# Labels
|
96 |
-
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
|
97 |
-
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
|
98 |
-
for cid, cat in enumerate(names):
|
99 |
-
catIds = coco.getCatIds(catNms=[cat])
|
100 |
-
imgIds = coco.getImgIds(catIds=catIds)
|
101 |
-
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
|
102 |
-
width, height = im["width"], im["height"]
|
103 |
-
path = Path(im["file_name"]) # image filename
|
104 |
-
try:
|
105 |
-
with open(labels / path.with_suffix('.txt').name, 'a') as file:
|
106 |
-
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
|
107 |
-
for a in coco.loadAnns(annIds):
|
108 |
-
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
|
109 |
-
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
|
110 |
-
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
|
111 |
-
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
|
112 |
-
except Exception as e:
|
113 |
-
print(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/SKU-110K.yaml
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
|
3 |
-
# Example usage: python train.py --data SKU-110K.yaml
|
4 |
-
# parent
|
5 |
-
# ├── yolov5
|
6 |
-
# └── datasets
|
7 |
-
# └── SKU-110K ← downloads here
|
8 |
-
|
9 |
-
|
10 |
-
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
-
path: ../datasets/SKU-110K # dataset root dir
|
12 |
-
train: train.txt # train images (relative to 'path') 8219 images
|
13 |
-
val: val.txt # val images (relative to 'path') 588 images
|
14 |
-
test: test.txt # test images (optional) 2936 images
|
15 |
-
|
16 |
-
# Classes
|
17 |
-
nc: 1 # number of classes
|
18 |
-
names: ['object'] # class names
|
19 |
-
|
20 |
-
|
21 |
-
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
22 |
-
download: |
|
23 |
-
import shutil
|
24 |
-
from tqdm import tqdm
|
25 |
-
from utils.general import np, pd, Path, download, xyxy2xywh
|
26 |
-
|
27 |
-
|
28 |
-
# Download
|
29 |
-
dir = Path(yaml['path']) # dataset root dir
|
30 |
-
parent = Path(dir.parent) # download dir
|
31 |
-
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
|
32 |
-
download(urls, dir=parent, delete=False)
|
33 |
-
|
34 |
-
# Rename directories
|
35 |
-
if dir.exists():
|
36 |
-
shutil.rmtree(dir)
|
37 |
-
(parent / 'SKU110K_fixed').rename(dir) # rename dir
|
38 |
-
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
|
39 |
-
|
40 |
-
# Convert labels
|
41 |
-
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
|
42 |
-
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
|
43 |
-
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
|
44 |
-
images, unique_images = x[:, 0], np.unique(x[:, 0])
|
45 |
-
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
|
46 |
-
f.writelines(f'./images/{s}\n' for s in unique_images)
|
47 |
-
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
|
48 |
-
cls = 0 # single-class dataset
|
49 |
-
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
|
50 |
-
for r in x[images == im]:
|
51 |
-
w, h = r[6], r[7] # image width, height
|
52 |
-
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
|
53 |
-
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/VOC.yaml
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
|
3 |
-
# Example usage: python train.py --data VOC.yaml
|
4 |
-
# parent
|
5 |
-
# ├── yolov5
|
6 |
-
# └── datasets
|
7 |
-
# └── VOC ← downloads here
|
8 |
-
|
9 |
-
|
10 |
-
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
-
path: ../datasets/VOC
|
12 |
-
train: # train images (relative to 'path') 16551 images
|
13 |
-
- images/train2012
|
14 |
-
- images/train2007
|
15 |
-
- images/val2012
|
16 |
-
- images/val2007
|
17 |
-
val: # val images (relative to 'path') 4952 images
|
18 |
-
- images/test2007
|
19 |
-
test: # test images (optional)
|
20 |
-
- images/test2007
|
21 |
-
|
22 |
-
# Classes
|
23 |
-
nc: 20 # number of classes
|
24 |
-
names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
|
25 |
-
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
|
26 |
-
|
27 |
-
|
28 |
-
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
29 |
-
download: |
|
30 |
-
import xml.etree.ElementTree as ET
|
31 |
-
|
32 |
-
from tqdm import tqdm
|
33 |
-
from utils.general import download, Path
|
34 |
-
|
35 |
-
|
36 |
-
def convert_label(path, lb_path, year, image_id):
|
37 |
-
def convert_box(size, box):
|
38 |
-
dw, dh = 1. / size[0], 1. / size[1]
|
39 |
-
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
|
40 |
-
return x * dw, y * dh, w * dw, h * dh
|
41 |
-
|
42 |
-
in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
|
43 |
-
out_file = open(lb_path, 'w')
|
44 |
-
tree = ET.parse(in_file)
|
45 |
-
root = tree.getroot()
|
46 |
-
size = root.find('size')
|
47 |
-
w = int(size.find('width').text)
|
48 |
-
h = int(size.find('height').text)
|
49 |
-
|
50 |
-
for obj in root.iter('object'):
|
51 |
-
cls = obj.find('name').text
|
52 |
-
if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
|
53 |
-
xmlbox = obj.find('bndbox')
|
54 |
-
bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
|
55 |
-
cls_id = yaml['names'].index(cls) # class id
|
56 |
-
out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
|
57 |
-
|
58 |
-
|
59 |
-
# Download
|
60 |
-
dir = Path(yaml['path']) # dataset root dir
|
61 |
-
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
62 |
-
urls = [url + 'VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
|
63 |
-
url + 'VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
|
64 |
-
url + 'VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
|
65 |
-
download(urls, dir=dir / 'images', delete=False, threads=3)
|
66 |
-
|
67 |
-
# Convert
|
68 |
-
path = dir / f'images/VOCdevkit'
|
69 |
-
for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
|
70 |
-
imgs_path = dir / 'images' / f'{image_set}{year}'
|
71 |
-
lbs_path = dir / 'labels' / f'{image_set}{year}'
|
72 |
-
imgs_path.mkdir(exist_ok=True, parents=True)
|
73 |
-
lbs_path.mkdir(exist_ok=True, parents=True)
|
74 |
-
|
75 |
-
image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split()
|
76 |
-
for id in tqdm(image_ids, desc=f'{image_set}{year}'):
|
77 |
-
f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
|
78 |
-
lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
|
79 |
-
f.rename(imgs_path / f.name) # move image
|
80 |
-
convert_label(path, lb_path, year, id) # convert labels to YOLO format
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/VisDrone.yaml
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
|
3 |
-
# Example usage: python train.py --data VisDrone.yaml
|
4 |
-
# parent
|
5 |
-
# ├── yolov5
|
6 |
-
# └── datasets
|
7 |
-
# └── VisDrone ← downloads here
|
8 |
-
|
9 |
-
|
10 |
-
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
-
path: ../datasets/VisDrone # dataset root dir
|
12 |
-
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
13 |
-
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
14 |
-
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
15 |
-
|
16 |
-
# Classes
|
17 |
-
nc: 10 # number of classes
|
18 |
-
names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
|
19 |
-
|
20 |
-
|
21 |
-
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
22 |
-
download: |
|
23 |
-
from utils.general import download, os, Path
|
24 |
-
|
25 |
-
def visdrone2yolo(dir):
|
26 |
-
from PIL import Image
|
27 |
-
from tqdm import tqdm
|
28 |
-
|
29 |
-
def convert_box(size, box):
|
30 |
-
# Convert VisDrone box to YOLO xywh box
|
31 |
-
dw = 1. / size[0]
|
32 |
-
dh = 1. / size[1]
|
33 |
-
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
|
34 |
-
|
35 |
-
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
|
36 |
-
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
|
37 |
-
for f in pbar:
|
38 |
-
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
|
39 |
-
lines = []
|
40 |
-
with open(f, 'r') as file: # read annotation.txt
|
41 |
-
for row in [x.split(',') for x in file.read().strip().splitlines()]:
|
42 |
-
if row[4] == '0': # VisDrone 'ignored regions' class 0
|
43 |
-
continue
|
44 |
-
cls = int(row[5]) - 1
|
45 |
-
box = convert_box(img_size, tuple(map(int, row[:4])))
|
46 |
-
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
|
47 |
-
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
|
48 |
-
fl.writelines(lines) # write label.txt
|
49 |
-
|
50 |
-
|
51 |
-
# Download
|
52 |
-
dir = Path(yaml['path']) # dataset root dir
|
53 |
-
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
|
54 |
-
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
|
55 |
-
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
|
56 |
-
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
|
57 |
-
download(urls, dir=dir, threads=4)
|
58 |
-
|
59 |
-
# Convert
|
60 |
-
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
|
61 |
-
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/coco.yaml
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# COCO 2017 dataset http://cocodataset.org by Microsoft
|
3 |
-
# Example usage: python train.py --data coco.yaml
|
4 |
-
# parent
|
5 |
-
# ├── yolov5
|
6 |
-
# └── datasets
|
7 |
-
# └── coco ← downloads here
|
8 |
-
|
9 |
-
|
10 |
-
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
-
path: ../datasets/coco # dataset root dir
|
12 |
-
train: train2017.txt # train images (relative to 'path') 118287 images
|
13 |
-
val: val2017.txt # val images (relative to 'path') 5000 images
|
14 |
-
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
15 |
-
|
16 |
-
# Classes
|
17 |
-
nc: 80 # number of classes
|
18 |
-
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
19 |
-
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
20 |
-
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
21 |
-
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
22 |
-
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
23 |
-
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
24 |
-
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
25 |
-
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
26 |
-
'hair drier', 'toothbrush'] # class names
|
27 |
-
|
28 |
-
|
29 |
-
# Download script/URL (optional)
|
30 |
-
download: |
|
31 |
-
from utils.general import download, Path
|
32 |
-
|
33 |
-
|
34 |
-
# Download labels
|
35 |
-
segments = False # segment or box labels
|
36 |
-
dir = Path(yaml['path']) # dataset root dir
|
37 |
-
url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
|
38 |
-
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
|
39 |
-
download(urls, dir=dir.parent)
|
40 |
-
|
41 |
-
# Download data
|
42 |
-
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
|
43 |
-
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
|
44 |
-
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
|
45 |
-
download(urls, dir=dir / 'images', threads=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/coco128.yaml
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
|
3 |
-
# Example usage: python train.py --data coco128.yaml
|
4 |
-
# parent
|
5 |
-
# ├── yolov5
|
6 |
-
# └── datasets
|
7 |
-
# └── coco128 ← downloads here
|
8 |
-
|
9 |
-
|
10 |
-
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
11 |
-
path: ../datasets/coco128 # dataset root dir
|
12 |
-
train: images/train2017 # train images (relative to 'path') 128 images
|
13 |
-
val: images/train2017 # val images (relative to 'path') 128 images
|
14 |
-
test: # test images (optional)
|
15 |
-
|
16 |
-
# Classes
|
17 |
-
nc: 80 # number of classes
|
18 |
-
names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
19 |
-
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
20 |
-
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
|
21 |
-
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
22 |
-
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
|
23 |
-
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
|
24 |
-
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
|
25 |
-
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
26 |
-
'hair drier', 'toothbrush'] # class names
|
27 |
-
|
28 |
-
|
29 |
-
# Download script/URL (optional)
|
30 |
-
download: https://ultralytics.com/assets/coco128.zip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/hyps/hyp.Objects365.yaml
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Hyperparameters for Objects365 training
|
3 |
-
# python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
|
4 |
-
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
|
5 |
-
|
6 |
-
lr0: 0.00258
|
7 |
-
lrf: 0.17
|
8 |
-
momentum: 0.779
|
9 |
-
weight_decay: 0.00058
|
10 |
-
warmup_epochs: 1.33
|
11 |
-
warmup_momentum: 0.86
|
12 |
-
warmup_bias_lr: 0.0711
|
13 |
-
box: 0.0539
|
14 |
-
cls: 0.299
|
15 |
-
cls_pw: 0.825
|
16 |
-
obj: 0.632
|
17 |
-
obj_pw: 1.0
|
18 |
-
iou_t: 0.2
|
19 |
-
anchor_t: 3.44
|
20 |
-
anchors: 3.2
|
21 |
-
fl_gamma: 0.0
|
22 |
-
hsv_h: 0.0188
|
23 |
-
hsv_s: 0.704
|
24 |
-
hsv_v: 0.36
|
25 |
-
degrees: 0.0
|
26 |
-
translate: 0.0902
|
27 |
-
scale: 0.491
|
28 |
-
shear: 0.0
|
29 |
-
perspective: 0.0
|
30 |
-
flipud: 0.0
|
31 |
-
fliplr: 0.5
|
32 |
-
mosaic: 1.0
|
33 |
-
mixup: 0.0
|
34 |
-
copy_paste: 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/hyps/hyp.VOC.yaml
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Hyperparameters for VOC training
|
3 |
-
# python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
|
4 |
-
# See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
|
5 |
-
|
6 |
-
# YOLOv5 Hyperparameter Evolution Results
|
7 |
-
# Best generation: 467
|
8 |
-
# Last generation: 996
|
9 |
-
# metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
|
10 |
-
# 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
|
11 |
-
|
12 |
-
lr0: 0.00334
|
13 |
-
lrf: 0.15135
|
14 |
-
momentum: 0.74832
|
15 |
-
weight_decay: 0.00025
|
16 |
-
warmup_epochs: 3.3835
|
17 |
-
warmup_momentum: 0.59462
|
18 |
-
warmup_bias_lr: 0.18657
|
19 |
-
box: 0.02
|
20 |
-
cls: 0.21638
|
21 |
-
cls_pw: 0.5
|
22 |
-
obj: 0.51728
|
23 |
-
obj_pw: 0.67198
|
24 |
-
iou_t: 0.2
|
25 |
-
anchor_t: 3.3744
|
26 |
-
fl_gamma: 0.0
|
27 |
-
hsv_h: 0.01041
|
28 |
-
hsv_s: 0.54703
|
29 |
-
hsv_v: 0.27739
|
30 |
-
degrees: 0.0
|
31 |
-
translate: 0.04591
|
32 |
-
scale: 0.75544
|
33 |
-
shear: 0.0
|
34 |
-
perspective: 0.0
|
35 |
-
flipud: 0.0
|
36 |
-
fliplr: 0.5
|
37 |
-
mosaic: 0.85834
|
38 |
-
mixup: 0.04266
|
39 |
-
copy_paste: 0.0
|
40 |
-
anchors: 3.412
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/hyps/hyp.scratch-high.yaml
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Hyperparameters for high-augmentation COCO training from scratch
|
3 |
-
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
|
4 |
-
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
-
|
6 |
-
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
-
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
-
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
-
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
-
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
-
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
-
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
-
box: 0.05 # box loss gain
|
14 |
-
cls: 0.3 # cls loss gain
|
15 |
-
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
-
obj: 0.7 # obj loss gain (scale with pixels)
|
17 |
-
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
-
iou_t: 0.20 # IoU training threshold
|
19 |
-
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
-
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
-
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
-
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
-
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
-
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
-
degrees: 0.0 # image rotation (+/- deg)
|
26 |
-
translate: 0.1 # image translation (+/- fraction)
|
27 |
-
scale: 0.9 # image scale (+/- gain)
|
28 |
-
shear: 0.0 # image shear (+/- deg)
|
29 |
-
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
-
flipud: 0.0 # image flip up-down (probability)
|
31 |
-
fliplr: 0.5 # image flip left-right (probability)
|
32 |
-
mosaic: 1.0 # image mosaic (probability)
|
33 |
-
mixup: 0.1 # image mixup (probability)
|
34 |
-
copy_paste: 0.1 # segment copy-paste (probability)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/hyps/hyp.scratch-low.yaml
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Hyperparameters for low-augmentation COCO training from scratch
|
3 |
-
# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
|
4 |
-
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
-
|
6 |
-
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
-
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
-
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
-
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
-
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
-
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
-
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
-
box: 0.05 # box loss gain
|
14 |
-
cls: 0.5 # cls loss gain
|
15 |
-
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
-
obj: 1.0 # obj loss gain (scale with pixels)
|
17 |
-
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
-
iou_t: 0.20 # IoU training threshold
|
19 |
-
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
-
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
-
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
-
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
-
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
-
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
-
degrees: 0.0 # image rotation (+/- deg)
|
26 |
-
translate: 0.1 # image translation (+/- fraction)
|
27 |
-
scale: 0.5 # image scale (+/- gain)
|
28 |
-
shear: 0.0 # image shear (+/- deg)
|
29 |
-
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
-
flipud: 0.0 # image flip up-down (probability)
|
31 |
-
fliplr: 0.5 # image flip left-right (probability)
|
32 |
-
mosaic: 1.0 # image mosaic (probability)
|
33 |
-
mixup: 0.0 # image mixup (probability)
|
34 |
-
copy_paste: 0.0 # segment copy-paste (probability)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/hyps/hyp.scratch-med.yaml
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Hyperparameters for medium-augmentation COCO training from scratch
|
3 |
-
# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
|
4 |
-
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
|
5 |
-
|
6 |
-
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
7 |
-
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
|
8 |
-
momentum: 0.937 # SGD momentum/Adam beta1
|
9 |
-
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
10 |
-
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
11 |
-
warmup_momentum: 0.8 # warmup initial momentum
|
12 |
-
warmup_bias_lr: 0.1 # warmup initial bias lr
|
13 |
-
box: 0.05 # box loss gain
|
14 |
-
cls: 0.3 # cls loss gain
|
15 |
-
cls_pw: 1.0 # cls BCELoss positive_weight
|
16 |
-
obj: 0.7 # obj loss gain (scale with pixels)
|
17 |
-
obj_pw: 1.0 # obj BCELoss positive_weight
|
18 |
-
iou_t: 0.20 # IoU training threshold
|
19 |
-
anchor_t: 4.0 # anchor-multiple threshold
|
20 |
-
# anchors: 3 # anchors per output layer (0 to ignore)
|
21 |
-
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
22 |
-
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
23 |
-
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
24 |
-
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
25 |
-
degrees: 0.0 # image rotation (+/- deg)
|
26 |
-
translate: 0.1 # image translation (+/- fraction)
|
27 |
-
scale: 0.9 # image scale (+/- gain)
|
28 |
-
shear: 0.0 # image shear (+/- deg)
|
29 |
-
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
30 |
-
flipud: 0.0 # image flip up-down (probability)
|
31 |
-
fliplr: 0.5 # image flip left-right (probability)
|
32 |
-
mosaic: 1.0 # image mosaic (probability)
|
33 |
-
mixup: 0.1 # image mixup (probability)
|
34 |
-
copy_paste: 0.0 # segment copy-paste (probability)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/images/bus.jpg
DELETED
Binary file (487 kB)
|
|
ultralytics/yolov5/data/images/zidane.jpg
DELETED
Binary file (169 kB)
|
|
ultralytics/yolov5/data/scripts/download_weights.sh
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
3 |
-
# Download latest models from https://github.com/ultralytics/yolov5/releases
|
4 |
-
# Example usage: bash path/to/download_weights.sh
|
5 |
-
# parent
|
6 |
-
# └── yolov5
|
7 |
-
# ├── yolov5s.pt ← downloads here
|
8 |
-
# ├── yolov5m.pt
|
9 |
-
# └── ...
|
10 |
-
|
11 |
-
python - <<EOF
|
12 |
-
from utils.downloads import attempt_download
|
13 |
-
|
14 |
-
models = ['n', 's', 'm', 'l', 'x']
|
15 |
-
models.extend([x + '6' for x in models]) # add P6 models
|
16 |
-
|
17 |
-
for x in models:
|
18 |
-
attempt_download(f'yolov5{x}.pt')
|
19 |
-
|
20 |
-
EOF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/scripts/get_coco.sh
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
3 |
-
# Download COCO 2017 dataset http://cocodataset.org
|
4 |
-
# Example usage: bash data/scripts/get_coco.sh
|
5 |
-
# parent
|
6 |
-
# ├── yolov5
|
7 |
-
# └── datasets
|
8 |
-
# └── coco ← downloads here
|
9 |
-
|
10 |
-
# Download/unzip labels
|
11 |
-
d='../datasets' # unzip directory
|
12 |
-
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
13 |
-
f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
|
14 |
-
echo 'Downloading' $url$f ' ...'
|
15 |
-
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
|
16 |
-
|
17 |
-
# Download/unzip images
|
18 |
-
d='../datasets/coco/images' # unzip directory
|
19 |
-
url=http://images.cocodataset.org/zips/
|
20 |
-
f1='train2017.zip' # 19G, 118k images
|
21 |
-
f2='val2017.zip' # 1G, 5k images
|
22 |
-
f3='test2017.zip' # 7G, 41k images (optional)
|
23 |
-
for f in $f1 $f2; do
|
24 |
-
echo 'Downloading' $url$f '...'
|
25 |
-
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
|
26 |
-
done
|
27 |
-
wait # finish background tasks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/scripts/get_coco128.sh
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
3 |
-
# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
|
4 |
-
# Example usage: bash data/scripts/get_coco128.sh
|
5 |
-
# parent
|
6 |
-
# ├── yolov5
|
7 |
-
# └── datasets
|
8 |
-
# └── coco128 ← downloads here
|
9 |
-
|
10 |
-
# Download/unzip images and labels
|
11 |
-
d='../datasets' # unzip directory
|
12 |
-
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
13 |
-
f='coco128.zip' # or 'coco128-segments.zip', 68 MB
|
14 |
-
echo 'Downloading' $url$f ' ...'
|
15 |
-
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
|
16 |
-
|
17 |
-
wait # finish background tasks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/data/xView.yaml
DELETED
@@ -1,102 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
3 |
-
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
|
4 |
-
# Example usage: python train.py --data xView.yaml
|
5 |
-
# parent
|
6 |
-
# ├── yolov5
|
7 |
-
# └── datasets
|
8 |
-
# └── xView ← downloads here
|
9 |
-
|
10 |
-
|
11 |
-
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12 |
-
path: ../datasets/xView # dataset root dir
|
13 |
-
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
14 |
-
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
|
15 |
-
|
16 |
-
# Classes
|
17 |
-
nc: 60 # number of classes
|
18 |
-
names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
|
19 |
-
'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
|
20 |
-
'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
|
21 |
-
'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
|
22 |
-
'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
|
23 |
-
'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
|
24 |
-
'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
|
25 |
-
'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
|
26 |
-
'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names
|
27 |
-
|
28 |
-
|
29 |
-
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
30 |
-
download: |
|
31 |
-
import json
|
32 |
-
import os
|
33 |
-
from pathlib import Path
|
34 |
-
|
35 |
-
import numpy as np
|
36 |
-
from PIL import Image
|
37 |
-
from tqdm import tqdm
|
38 |
-
|
39 |
-
from utils.datasets import autosplit
|
40 |
-
from utils.general import download, xyxy2xywhn
|
41 |
-
|
42 |
-
|
43 |
-
def convert_labels(fname=Path('xView/xView_train.geojson')):
|
44 |
-
# Convert xView geoJSON labels to YOLO format
|
45 |
-
path = fname.parent
|
46 |
-
with open(fname) as f:
|
47 |
-
print(f'Loading {fname}...')
|
48 |
-
data = json.load(f)
|
49 |
-
|
50 |
-
# Make dirs
|
51 |
-
labels = Path(path / 'labels' / 'train')
|
52 |
-
os.system(f'rm -rf {labels}')
|
53 |
-
labels.mkdir(parents=True, exist_ok=True)
|
54 |
-
|
55 |
-
# xView classes 11-94 to 0-59
|
56 |
-
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
|
57 |
-
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
|
58 |
-
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
|
59 |
-
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
|
60 |
-
|
61 |
-
shapes = {}
|
62 |
-
for feature in tqdm(data['features'], desc=f'Converting {fname}'):
|
63 |
-
p = feature['properties']
|
64 |
-
if p['bounds_imcoords']:
|
65 |
-
id = p['image_id']
|
66 |
-
file = path / 'train_images' / id
|
67 |
-
if file.exists(): # 1395.tif missing
|
68 |
-
try:
|
69 |
-
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
|
70 |
-
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
|
71 |
-
cls = p['type_id']
|
72 |
-
cls = xview_class2index[int(cls)] # xView class to 0-60
|
73 |
-
assert 59 >= cls >= 0, f'incorrect class index {cls}'
|
74 |
-
|
75 |
-
# Write YOLO label
|
76 |
-
if id not in shapes:
|
77 |
-
shapes[id] = Image.open(file).size
|
78 |
-
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
|
79 |
-
with open((labels / id).with_suffix('.txt'), 'a') as f:
|
80 |
-
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
|
81 |
-
except Exception as e:
|
82 |
-
print(f'WARNING: skipping one label for {file}: {e}')
|
83 |
-
|
84 |
-
|
85 |
-
# Download manually from https://challenge.xviewdataset.org
|
86 |
-
dir = Path(yaml['path']) # dataset root dir
|
87 |
-
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
|
88 |
-
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
|
89 |
-
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
|
90 |
-
# download(urls, dir=dir, delete=False)
|
91 |
-
|
92 |
-
# Convert labels
|
93 |
-
convert_labels(dir / 'xView_train.geojson')
|
94 |
-
|
95 |
-
# Move images
|
96 |
-
images = Path(dir / 'images')
|
97 |
-
images.mkdir(parents=True, exist_ok=True)
|
98 |
-
Path(dir / 'train_images').rename(dir / 'images' / 'train')
|
99 |
-
Path(dir / 'val_images').rename(dir / 'images' / 'val')
|
100 |
-
|
101 |
-
# Split
|
102 |
-
autosplit(dir / 'images' / 'train')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/detect.py
DELETED
@@ -1,252 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
"""
|
3 |
-
Run inference on images, videos, directories, streams, etc.
|
4 |
-
|
5 |
-
Usage - sources:
|
6 |
-
$ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
|
7 |
-
img.jpg # image
|
8 |
-
vid.mp4 # video
|
9 |
-
path/ # directory
|
10 |
-
path/*.jpg # glob
|
11 |
-
'https://youtu.be/Zgi9g1ksQHc' # YouTube
|
12 |
-
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
|
13 |
-
|
14 |
-
Usage - formats:
|
15 |
-
$ python path/to/detect.py --weights yolov5s.pt # PyTorch
|
16 |
-
yolov5s.torchscript # TorchScript
|
17 |
-
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
18 |
-
yolov5s.xml # OpenVINO
|
19 |
-
yolov5s.engine # TensorRT
|
20 |
-
yolov5s.mlmodel # CoreML (MacOS-only)
|
21 |
-
yolov5s_saved_model # TensorFlow SavedModel
|
22 |
-
yolov5s.pb # TensorFlow GraphDef
|
23 |
-
yolov5s.tflite # TensorFlow Lite
|
24 |
-
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
25 |
-
"""
|
26 |
-
|
27 |
-
import argparse
|
28 |
-
import os
|
29 |
-
import sys
|
30 |
-
from pathlib import Path
|
31 |
-
|
32 |
-
import cv2
|
33 |
-
import torch
|
34 |
-
import torch.backends.cudnn as cudnn
|
35 |
-
|
36 |
-
FILE = Path(__file__).resolve()
|
37 |
-
ROOT = FILE.parents[0] # YOLOv5 root directory
|
38 |
-
if str(ROOT) not in sys.path:
|
39 |
-
sys.path.append(str(ROOT)) # add ROOT to PATH
|
40 |
-
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
41 |
-
|
42 |
-
from models.common import DetectMultiBackend
|
43 |
-
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
|
44 |
-
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
|
45 |
-
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
|
46 |
-
from utils.plots import Annotator, colors, save_one_box
|
47 |
-
from utils.torch_utils import select_device, time_sync
|
48 |
-
|
49 |
-
|
50 |
-
@torch.no_grad()
|
51 |
-
def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
|
52 |
-
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
|
53 |
-
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
54 |
-
imgsz=(640, 640), # inference size (height, width)
|
55 |
-
conf_thres=0.25, # confidence threshold
|
56 |
-
iou_thres=0.45, # NMS IOU threshold
|
57 |
-
max_det=1000, # maximum detections per image
|
58 |
-
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
59 |
-
view_img=False, # show results
|
60 |
-
save_txt=False, # save results to *.txt
|
61 |
-
save_conf=False, # save confidences in --save-txt labels
|
62 |
-
save_crop=False, # save cropped prediction boxes
|
63 |
-
nosave=False, # do not save images/videos
|
64 |
-
classes=None, # filter by class: --class 0, or --class 0 2 3
|
65 |
-
agnostic_nms=False, # class-agnostic NMS
|
66 |
-
augment=False, # augmented inference
|
67 |
-
visualize=False, # visualize features
|
68 |
-
update=False, # update all models
|
69 |
-
project=ROOT / 'runs/detect', # save results to project/name
|
70 |
-
name='exp', # save results to project/name
|
71 |
-
exist_ok=False, # existing project/name ok, do not increment
|
72 |
-
line_thickness=3, # bounding box thickness (pixels)
|
73 |
-
hide_labels=False, # hide labels
|
74 |
-
hide_conf=False, # hide confidences
|
75 |
-
half=False, # use FP16 half-precision inference
|
76 |
-
dnn=False, # use OpenCV DNN for ONNX inference
|
77 |
-
):
|
78 |
-
source = str(source)
|
79 |
-
save_img = not nosave and not source.endswith('.txt') # save inference images
|
80 |
-
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
81 |
-
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
82 |
-
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
83 |
-
if is_url and is_file:
|
84 |
-
source = check_file(source) # download
|
85 |
-
|
86 |
-
# Directories
|
87 |
-
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
88 |
-
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
89 |
-
|
90 |
-
# Load model
|
91 |
-
device = select_device(device)
|
92 |
-
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
93 |
-
stride, names, pt = model.stride, model.names, model.pt
|
94 |
-
imgsz = check_img_size(imgsz, s=stride) # check image size
|
95 |
-
|
96 |
-
# Dataloader
|
97 |
-
if webcam:
|
98 |
-
view_img = check_imshow()
|
99 |
-
cudnn.benchmark = True # set True to speed up constant image size inference
|
100 |
-
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
|
101 |
-
bs = len(dataset) # batch_size
|
102 |
-
else:
|
103 |
-
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
|
104 |
-
bs = 1 # batch_size
|
105 |
-
vid_path, vid_writer = [None] * bs, [None] * bs
|
106 |
-
|
107 |
-
# Run inference
|
108 |
-
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
|
109 |
-
dt, seen = [0.0, 0.0, 0.0], 0
|
110 |
-
for path, im, im0s, vid_cap, s in dataset:
|
111 |
-
t1 = time_sync()
|
112 |
-
im = torch.from_numpy(im).to(device)
|
113 |
-
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
114 |
-
im /= 255 # 0 - 255 to 0.0 - 1.0
|
115 |
-
if len(im.shape) == 3:
|
116 |
-
im = im[None] # expand for batch dim
|
117 |
-
t2 = time_sync()
|
118 |
-
dt[0] += t2 - t1
|
119 |
-
|
120 |
-
# Inference
|
121 |
-
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
122 |
-
pred = model(im, augment=augment, visualize=visualize)
|
123 |
-
t3 = time_sync()
|
124 |
-
dt[1] += t3 - t2
|
125 |
-
|
126 |
-
# NMS
|
127 |
-
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
128 |
-
dt[2] += time_sync() - t3
|
129 |
-
|
130 |
-
# Second-stage classifier (optional)
|
131 |
-
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
132 |
-
|
133 |
-
# Process predictions
|
134 |
-
for i, det in enumerate(pred): # per image
|
135 |
-
seen += 1
|
136 |
-
if webcam: # batch_size >= 1
|
137 |
-
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
138 |
-
s += f'{i}: '
|
139 |
-
else:
|
140 |
-
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
141 |
-
|
142 |
-
p = Path(p) # to Path
|
143 |
-
save_path = str(save_dir / p.name) # im.jpg
|
144 |
-
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
145 |
-
s += '%gx%g ' % im.shape[2:] # print string
|
146 |
-
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
147 |
-
imc = im0.copy() if save_crop else im0 # for save_crop
|
148 |
-
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
149 |
-
if len(det):
|
150 |
-
# Rescale boxes from img_size to im0 size
|
151 |
-
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
|
152 |
-
|
153 |
-
# Print results
|
154 |
-
for c in det[:, -1].unique():
|
155 |
-
n = (det[:, -1] == c).sum() # detections per class
|
156 |
-
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
157 |
-
|
158 |
-
# Write results
|
159 |
-
for *xyxy, conf, cls in reversed(det):
|
160 |
-
if save_txt: # Write to file
|
161 |
-
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
162 |
-
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
163 |
-
with open(txt_path + '.txt', 'a') as f:
|
164 |
-
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
165 |
-
|
166 |
-
if save_img or save_crop or view_img: # Add bbox to image
|
167 |
-
c = int(cls) # integer class
|
168 |
-
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
169 |
-
annotator.box_label(xyxy, label, color=colors(c, True))
|
170 |
-
if save_crop:
|
171 |
-
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
172 |
-
|
173 |
-
# Stream results
|
174 |
-
im0 = annotator.result()
|
175 |
-
if view_img:
|
176 |
-
cv2.imshow(str(p), im0)
|
177 |
-
cv2.waitKey(1) # 1 millisecond
|
178 |
-
|
179 |
-
# Save results (image with detections)
|
180 |
-
if save_img:
|
181 |
-
if dataset.mode == 'image':
|
182 |
-
cv2.imwrite(save_path, im0)
|
183 |
-
else: # 'video' or 'stream'
|
184 |
-
if vid_path[i] != save_path: # new video
|
185 |
-
vid_path[i] = save_path
|
186 |
-
if isinstance(vid_writer[i], cv2.VideoWriter):
|
187 |
-
vid_writer[i].release() # release previous video writer
|
188 |
-
if vid_cap: # video
|
189 |
-
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
190 |
-
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
191 |
-
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
192 |
-
else: # stream
|
193 |
-
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
194 |
-
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
195 |
-
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
196 |
-
vid_writer[i].write(im0)
|
197 |
-
|
198 |
-
# Print time (inference-only)
|
199 |
-
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
|
200 |
-
|
201 |
-
# Print results
|
202 |
-
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
|
203 |
-
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
204 |
-
if save_txt or save_img:
|
205 |
-
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
206 |
-
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
207 |
-
if update:
|
208 |
-
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
|
209 |
-
|
210 |
-
|
211 |
-
def parse_opt():
|
212 |
-
parser = argparse.ArgumentParser()
|
213 |
-
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
|
214 |
-
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
|
215 |
-
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
216 |
-
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
217 |
-
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
218 |
-
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
219 |
-
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
220 |
-
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
221 |
-
parser.add_argument('--view-img', action='store_true', help='show results')
|
222 |
-
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
223 |
-
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
224 |
-
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
225 |
-
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
226 |
-
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
227 |
-
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
228 |
-
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
229 |
-
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
230 |
-
parser.add_argument('--update', action='store_true', help='update all models')
|
231 |
-
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
232 |
-
parser.add_argument('--name', default='exp', help='save results to project/name')
|
233 |
-
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
234 |
-
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
235 |
-
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
236 |
-
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
237 |
-
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
238 |
-
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
239 |
-
opt = parser.parse_args()
|
240 |
-
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
241 |
-
print_args(FILE.stem, opt)
|
242 |
-
return opt
|
243 |
-
|
244 |
-
|
245 |
-
def main(opt):
|
246 |
-
check_requirements(exclude=('tensorboard', 'thop'))
|
247 |
-
run(**vars(opt))
|
248 |
-
|
249 |
-
|
250 |
-
if __name__ == "__main__":
|
251 |
-
opt = parse_opt()
|
252 |
-
main(opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/__init__.py
DELETED
File without changes
|
ultralytics/yolov5/models/hub/anchors.yaml
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
# Default anchors for COCO data
|
3 |
-
|
4 |
-
|
5 |
-
# P5 -------------------------------------------------------------------------------------------------------------------
|
6 |
-
# P5-640:
|
7 |
-
anchors_p5_640:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
|
13 |
-
# P6 -------------------------------------------------------------------------------------------------------------------
|
14 |
-
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
|
15 |
-
anchors_p6_640:
|
16 |
-
- [9,11, 21,19, 17,41] # P3/8
|
17 |
-
- [43,32, 39,70, 86,64] # P4/16
|
18 |
-
- [65,131, 134,130, 120,265] # P5/32
|
19 |
-
- [282,180, 247,354, 512,387] # P6/64
|
20 |
-
|
21 |
-
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
|
22 |
-
anchors_p6_1280:
|
23 |
-
- [19,27, 44,40, 38,94] # P3/8
|
24 |
-
- [96,68, 86,152, 180,137] # P4/16
|
25 |
-
- [140,301, 303,264, 238,542] # P5/32
|
26 |
-
- [436,615, 739,380, 925,792] # P6/64
|
27 |
-
|
28 |
-
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
|
29 |
-
anchors_p6_1920:
|
30 |
-
- [28,41, 67,59, 57,141] # P3/8
|
31 |
-
- [144,103, 129,227, 270,205] # P4/16
|
32 |
-
- [209,452, 455,396, 358,812] # P5/32
|
33 |
-
- [653,922, 1109,570, 1387,1187] # P6/64
|
34 |
-
|
35 |
-
|
36 |
-
# P7 -------------------------------------------------------------------------------------------------------------------
|
37 |
-
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
|
38 |
-
anchors_p7_640:
|
39 |
-
- [11,11, 13,30, 29,20] # P3/8
|
40 |
-
- [30,46, 61,38, 39,92] # P4/16
|
41 |
-
- [78,80, 146,66, 79,163] # P5/32
|
42 |
-
- [149,150, 321,143, 157,303] # P6/64
|
43 |
-
- [257,402, 359,290, 524,372] # P7/128
|
44 |
-
|
45 |
-
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
|
46 |
-
anchors_p7_1280:
|
47 |
-
- [19,22, 54,36, 32,77] # P3/8
|
48 |
-
- [70,83, 138,71, 75,173] # P4/16
|
49 |
-
- [165,159, 148,334, 375,151] # P5/32
|
50 |
-
- [334,317, 251,626, 499,474] # P6/64
|
51 |
-
- [750,326, 534,814, 1079,818] # P7/128
|
52 |
-
|
53 |
-
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
|
54 |
-
anchors_p7_1920:
|
55 |
-
- [29,34, 81,55, 47,115] # P3/8
|
56 |
-
- [105,124, 207,107, 113,259] # P4/16
|
57 |
-
- [247,238, 222,500, 563,227] # P5/32
|
58 |
-
- [501,476, 376,939, 749,711] # P6/64
|
59 |
-
- [1126,489, 801,1222, 1618,1227] # P7/128
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov3-spp.yaml
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# darknet53 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
-
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
-
[-1, 1, Bottleneck, [64]],
|
18 |
-
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
-
[-1, 2, Bottleneck, [128]],
|
20 |
-
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
-
[-1, 8, Bottleneck, [256]],
|
22 |
-
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
-
[-1, 8, Bottleneck, [512]],
|
24 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
-
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
-
]
|
27 |
-
|
28 |
-
# YOLOv3-SPP head
|
29 |
-
head:
|
30 |
-
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
-
[-1, 1, SPP, [512, [5, 9, 13]]],
|
32 |
-
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
-
[-1, 1, Conv, [512, 1, 1]],
|
34 |
-
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
-
|
36 |
-
[-2, 1, Conv, [256, 1, 1]],
|
37 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
-
[-1, 1, Bottleneck, [512, False]],
|
40 |
-
[-1, 1, Bottleneck, [512, False]],
|
41 |
-
[-1, 1, Conv, [256, 1, 1]],
|
42 |
-
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
-
|
44 |
-
[-2, 1, Conv, [128, 1, 1]],
|
45 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
-
[-1, 1, Bottleneck, [256, False]],
|
48 |
-
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
-
|
50 |
-
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov3-tiny.yaml
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,14, 23,27, 37,58] # P4/16
|
9 |
-
- [81,82, 135,169, 344,319] # P5/32
|
10 |
-
|
11 |
-
# YOLOv3-tiny backbone
|
12 |
-
backbone:
|
13 |
-
# [from, number, module, args]
|
14 |
-
[[-1, 1, Conv, [16, 3, 1]], # 0
|
15 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
16 |
-
[-1, 1, Conv, [32, 3, 1]],
|
17 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
18 |
-
[-1, 1, Conv, [64, 3, 1]],
|
19 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
20 |
-
[-1, 1, Conv, [128, 3, 1]],
|
21 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
22 |
-
[-1, 1, Conv, [256, 3, 1]],
|
23 |
-
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
24 |
-
[-1, 1, Conv, [512, 3, 1]],
|
25 |
-
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
|
26 |
-
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
27 |
-
]
|
28 |
-
|
29 |
-
# YOLOv3-tiny head
|
30 |
-
head:
|
31 |
-
[[-1, 1, Conv, [1024, 3, 1]],
|
32 |
-
[-1, 1, Conv, [256, 1, 1]],
|
33 |
-
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
34 |
-
|
35 |
-
[-2, 1, Conv, [128, 1, 1]],
|
36 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
38 |
-
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
39 |
-
|
40 |
-
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
|
41 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov3.yaml
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# darknet53 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [32, 3, 1]], # 0
|
16 |
-
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
17 |
-
[-1, 1, Bottleneck, [64]],
|
18 |
-
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
19 |
-
[-1, 2, Bottleneck, [128]],
|
20 |
-
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
21 |
-
[-1, 8, Bottleneck, [256]],
|
22 |
-
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
23 |
-
[-1, 8, Bottleneck, [512]],
|
24 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
25 |
-
[-1, 4, Bottleneck, [1024]], # 10
|
26 |
-
]
|
27 |
-
|
28 |
-
# YOLOv3 head
|
29 |
-
head:
|
30 |
-
[[-1, 1, Bottleneck, [1024, False]],
|
31 |
-
[-1, 1, Conv, [512, 1, 1]],
|
32 |
-
[-1, 1, Conv, [1024, 3, 1]],
|
33 |
-
[-1, 1, Conv, [512, 1, 1]],
|
34 |
-
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
35 |
-
|
36 |
-
[-2, 1, Conv, [256, 1, 1]],
|
37 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
39 |
-
[-1, 1, Bottleneck, [512, False]],
|
40 |
-
[-1, 1, Bottleneck, [512, False]],
|
41 |
-
[-1, 1, Conv, [256, 1, 1]],
|
42 |
-
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
43 |
-
|
44 |
-
[-2, 1, Conv, [128, 1, 1]],
|
45 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
46 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
47 |
-
[-1, 1, Bottleneck, [256, False]],
|
48 |
-
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
49 |
-
|
50 |
-
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
51 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-bifpn.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 BiFPN head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-fpn.yaml
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 FPN head
|
28 |
-
head:
|
29 |
-
[[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
|
30 |
-
|
31 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
33 |
-
[-1, 1, Conv, [512, 1, 1]],
|
34 |
-
[-1, 3, C3, [512, False]], # 14 (P4/16-medium)
|
35 |
-
|
36 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
38 |
-
[-1, 1, Conv, [256, 1, 1]],
|
39 |
-
[-1, 3, C3, [256, False]], # 18 (P3/8-small)
|
40 |
-
|
41 |
-
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
42 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-p2.yaml
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
-
|
9 |
-
# YOLOv5 v6.0 backbone
|
10 |
-
backbone:
|
11 |
-
# [from, number, module, args]
|
12 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
13 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
-
[-1, 3, C3, [128]],
|
15 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
-
[-1, 6, C3, [256]],
|
17 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
-
[-1, 9, C3, [512]],
|
19 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
20 |
-
[-1, 3, C3, [1024]],
|
21 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
22 |
-
]
|
23 |
-
|
24 |
-
# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
|
25 |
-
head:
|
26 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
27 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
28 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
29 |
-
[-1, 3, C3, [512, False]], # 13
|
30 |
-
|
31 |
-
[-1, 1, Conv, [256, 1, 1]],
|
32 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
33 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
34 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
35 |
-
|
36 |
-
[-1, 1, Conv, [128, 1, 1]],
|
37 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
38 |
-
[[-1, 2], 1, Concat, [1]], # cat backbone P2
|
39 |
-
[-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
|
40 |
-
|
41 |
-
[-1, 1, Conv, [128, 3, 2]],
|
42 |
-
[[-1, 18], 1, Concat, [1]], # cat head P3
|
43 |
-
[-1, 3, C3, [256, False]], # 24 (P3/8-small)
|
44 |
-
|
45 |
-
[-1, 1, Conv, [256, 3, 2]],
|
46 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
47 |
-
[-1, 3, C3, [512, False]], # 27 (P4/16-medium)
|
48 |
-
|
49 |
-
[-1, 1, Conv, [512, 3, 2]],
|
50 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
51 |
-
[-1, 3, C3, [1024, False]], # 30 (P5/32-large)
|
52 |
-
|
53 |
-
[[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
|
54 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-p34.yaml
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.50 # layer channel multiple
|
7 |
-
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
-
|
9 |
-
# YOLOv5 v6.0 backbone
|
10 |
-
backbone:
|
11 |
-
# [from, number, module, args]
|
12 |
-
[ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2
|
13 |
-
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
14 |
-
[ -1, 3, C3, [ 128 ] ],
|
15 |
-
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
16 |
-
[ -1, 6, C3, [ 256 ] ],
|
17 |
-
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
18 |
-
[ -1, 9, C3, [ 512 ] ],
|
19 |
-
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
|
20 |
-
[ -1, 3, C3, [ 1024 ] ],
|
21 |
-
[ -1, 1, SPPF, [ 1024, 5 ] ], # 9
|
22 |
-
]
|
23 |
-
|
24 |
-
# YOLOv5 v6.0 head with (P3, P4) outputs
|
25 |
-
head:
|
26 |
-
[ [ -1, 1, Conv, [ 512, 1, 1 ] ],
|
27 |
-
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
28 |
-
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
29 |
-
[ -1, 3, C3, [ 512, False ] ], # 13
|
30 |
-
|
31 |
-
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
32 |
-
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
33 |
-
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
34 |
-
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
|
35 |
-
|
36 |
-
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
37 |
-
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
|
38 |
-
[ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
|
39 |
-
|
40 |
-
[ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4)
|
41 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-p6.yaml
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
-
|
9 |
-
# YOLOv5 v6.0 backbone
|
10 |
-
backbone:
|
11 |
-
# [from, number, module, args]
|
12 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
13 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
-
[-1, 3, C3, [128]],
|
15 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
-
[-1, 6, C3, [256]],
|
17 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
-
[-1, 9, C3, [512]],
|
19 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
20 |
-
[-1, 3, C3, [768]],
|
21 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
22 |
-
[-1, 3, C3, [1024]],
|
23 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
24 |
-
]
|
25 |
-
|
26 |
-
# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
|
27 |
-
head:
|
28 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
29 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
30 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
31 |
-
[-1, 3, C3, [768, False]], # 15
|
32 |
-
|
33 |
-
[-1, 1, Conv, [512, 1, 1]],
|
34 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
35 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
36 |
-
[-1, 3, C3, [512, False]], # 19
|
37 |
-
|
38 |
-
[-1, 1, Conv, [256, 1, 1]],
|
39 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
40 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
41 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [256, 3, 2]],
|
44 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
45 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [512, 3, 2]],
|
48 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
49 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [768, 3, 2]],
|
52 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
53 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
54 |
-
|
55 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
56 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-p7.yaml
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
|
8 |
-
|
9 |
-
# YOLOv5 v6.0 backbone
|
10 |
-
backbone:
|
11 |
-
# [from, number, module, args]
|
12 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
13 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
14 |
-
[-1, 3, C3, [128]],
|
15 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
16 |
-
[-1, 6, C3, [256]],
|
17 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
18 |
-
[-1, 9, C3, [512]],
|
19 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
20 |
-
[-1, 3, C3, [768]],
|
21 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
22 |
-
[-1, 3, C3, [1024]],
|
23 |
-
[-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
|
24 |
-
[-1, 3, C3, [1280]],
|
25 |
-
[-1, 1, SPPF, [1280, 5]], # 13
|
26 |
-
]
|
27 |
-
|
28 |
-
# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
|
29 |
-
head:
|
30 |
-
[[-1, 1, Conv, [1024, 1, 1]],
|
31 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
32 |
-
[[-1, 10], 1, Concat, [1]], # cat backbone P6
|
33 |
-
[-1, 3, C3, [1024, False]], # 17
|
34 |
-
|
35 |
-
[-1, 1, Conv, [768, 1, 1]],
|
36 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
37 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
38 |
-
[-1, 3, C3, [768, False]], # 21
|
39 |
-
|
40 |
-
[-1, 1, Conv, [512, 1, 1]],
|
41 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
42 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
43 |
-
[-1, 3, C3, [512, False]], # 25
|
44 |
-
|
45 |
-
[-1, 1, Conv, [256, 1, 1]],
|
46 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
47 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
48 |
-
[-1, 3, C3, [256, False]], # 29 (P3/8-small)
|
49 |
-
|
50 |
-
[-1, 1, Conv, [256, 3, 2]],
|
51 |
-
[[-1, 26], 1, Concat, [1]], # cat head P4
|
52 |
-
[-1, 3, C3, [512, False]], # 32 (P4/16-medium)
|
53 |
-
|
54 |
-
[-1, 1, Conv, [512, 3, 2]],
|
55 |
-
[[-1, 22], 1, Concat, [1]], # cat head P5
|
56 |
-
[-1, 3, C3, [768, False]], # 35 (P5/32-large)
|
57 |
-
|
58 |
-
[-1, 1, Conv, [768, 3, 2]],
|
59 |
-
[[-1, 18], 1, Concat, [1]], # cat head P6
|
60 |
-
[-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
|
61 |
-
|
62 |
-
[-1, 1, Conv, [1024, 3, 2]],
|
63 |
-
[[-1, 14], 1, Concat, [1]], # cat head P7
|
64 |
-
[-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
|
65 |
-
|
66 |
-
[[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
|
67 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5-panet.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 PANet head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5l6.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 1.0 # model depth multiple
|
6 |
-
width_multiple: 1.0 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [19,27, 44,40, 38,94] # P3/8
|
9 |
-
- [96,68, 86,152, 180,137] # P4/16
|
10 |
-
- [140,301, 303,264, 238,542] # P5/32
|
11 |
-
- [436,615, 739,380, 925,792] # P6/64
|
12 |
-
|
13 |
-
# YOLOv5 v6.0 backbone
|
14 |
-
backbone:
|
15 |
-
# [from, number, module, args]
|
16 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
-
[-1, 3, C3, [128]],
|
19 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1, 6, C3, [256]],
|
21 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
-
[-1, 9, C3, [512]],
|
23 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
-
[-1, 3, C3, [768]],
|
25 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1, 3, C3, [1024]],
|
27 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
-
]
|
29 |
-
|
30 |
-
# YOLOv5 v6.0 head
|
31 |
-
head:
|
32 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
-
[-1, 3, C3, [768, False]], # 15
|
36 |
-
|
37 |
-
[-1, 1, Conv, [512, 1, 1]],
|
38 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
-
[-1, 3, C3, [512, False]], # 19
|
41 |
-
|
42 |
-
[-1, 1, Conv, [256, 1, 1]],
|
43 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [256, 3, 2]],
|
48 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [512, 3, 2]],
|
52 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
-
|
55 |
-
[-1, 1, Conv, [768, 3, 2]],
|
56 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
-
|
59 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5m6.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.67 # model depth multiple
|
6 |
-
width_multiple: 0.75 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [19,27, 44,40, 38,94] # P3/8
|
9 |
-
- [96,68, 86,152, 180,137] # P4/16
|
10 |
-
- [140,301, 303,264, 238,542] # P5/32
|
11 |
-
- [436,615, 739,380, 925,792] # P6/64
|
12 |
-
|
13 |
-
# YOLOv5 v6.0 backbone
|
14 |
-
backbone:
|
15 |
-
# [from, number, module, args]
|
16 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
-
[-1, 3, C3, [128]],
|
19 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1, 6, C3, [256]],
|
21 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
-
[-1, 9, C3, [512]],
|
23 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
-
[-1, 3, C3, [768]],
|
25 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1, 3, C3, [1024]],
|
27 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
-
]
|
29 |
-
|
30 |
-
# YOLOv5 v6.0 head
|
31 |
-
head:
|
32 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
-
[-1, 3, C3, [768, False]], # 15
|
36 |
-
|
37 |
-
[-1, 1, Conv, [512, 1, 1]],
|
38 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
-
[-1, 3, C3, [512, False]], # 19
|
41 |
-
|
42 |
-
[-1, 1, Conv, [256, 1, 1]],
|
43 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [256, 3, 2]],
|
48 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [512, 3, 2]],
|
52 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
-
|
55 |
-
[-1, 1, Conv, [768, 3, 2]],
|
56 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
-
|
59 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5n6.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.25 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [19,27, 44,40, 38,94] # P3/8
|
9 |
-
- [96,68, 86,152, 180,137] # P4/16
|
10 |
-
- [140,301, 303,264, 238,542] # P5/32
|
11 |
-
- [436,615, 739,380, 925,792] # P6/64
|
12 |
-
|
13 |
-
# YOLOv5 v6.0 backbone
|
14 |
-
backbone:
|
15 |
-
# [from, number, module, args]
|
16 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
17 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
18 |
-
[-1, 3, C3, [128]],
|
19 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
20 |
-
[-1, 6, C3, [256]],
|
21 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
22 |
-
[-1, 9, C3, [512]],
|
23 |
-
[-1, 1, Conv, [768, 3, 2]], # 7-P5/32
|
24 |
-
[-1, 3, C3, [768]],
|
25 |
-
[-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
|
26 |
-
[-1, 3, C3, [1024]],
|
27 |
-
[-1, 1, SPPF, [1024, 5]], # 11
|
28 |
-
]
|
29 |
-
|
30 |
-
# YOLOv5 v6.0 head
|
31 |
-
head:
|
32 |
-
[[-1, 1, Conv, [768, 1, 1]],
|
33 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
34 |
-
[[-1, 8], 1, Concat, [1]], # cat backbone P5
|
35 |
-
[-1, 3, C3, [768, False]], # 15
|
36 |
-
|
37 |
-
[-1, 1, Conv, [512, 1, 1]],
|
38 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
39 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
40 |
-
[-1, 3, C3, [512, False]], # 19
|
41 |
-
|
42 |
-
[-1, 1, Conv, [256, 1, 1]],
|
43 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
44 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
45 |
-
[-1, 3, C3, [256, False]], # 23 (P3/8-small)
|
46 |
-
|
47 |
-
[-1, 1, Conv, [256, 3, 2]],
|
48 |
-
[[-1, 20], 1, Concat, [1]], # cat head P4
|
49 |
-
[-1, 3, C3, [512, False]], # 26 (P4/16-medium)
|
50 |
-
|
51 |
-
[-1, 1, Conv, [512, 3, 2]],
|
52 |
-
[[-1, 16], 1, Concat, [1]], # cat head P5
|
53 |
-
[-1, 3, C3, [768, False]], # 29 (P5/32-large)
|
54 |
-
|
55 |
-
[-1, 1, Conv, [768, 3, 2]],
|
56 |
-
[[-1, 12], 1, Concat, [1]], # cat head P6
|
57 |
-
[-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
|
58 |
-
|
59 |
-
[[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
|
60 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5s-ghost.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.50 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3Ghost, [128]],
|
18 |
-
[-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3Ghost, [256]],
|
20 |
-
[-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3Ghost, [512]],
|
22 |
-
[-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3Ghost, [1024]],
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 head
|
28 |
-
head:
|
29 |
-
[[-1, 1, GhostConv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3Ghost, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, GhostConv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, GhostConv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, GhostConv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ultralytics/yolov5/models/hub/yolov5s-transformer.yaml
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
|
2 |
-
|
3 |
-
# Parameters
|
4 |
-
nc: 80 # number of classes
|
5 |
-
depth_multiple: 0.33 # model depth multiple
|
6 |
-
width_multiple: 0.50 # layer channel multiple
|
7 |
-
anchors:
|
8 |
-
- [10,13, 16,30, 33,23] # P3/8
|
9 |
-
- [30,61, 62,45, 59,119] # P4/16
|
10 |
-
- [116,90, 156,198, 373,326] # P5/32
|
11 |
-
|
12 |
-
# YOLOv5 v6.0 backbone
|
13 |
-
backbone:
|
14 |
-
# [from, number, module, args]
|
15 |
-
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
16 |
-
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
17 |
-
[-1, 3, C3, [128]],
|
18 |
-
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
19 |
-
[-1, 6, C3, [256]],
|
20 |
-
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
21 |
-
[-1, 9, C3, [512]],
|
22 |
-
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
23 |
-
[-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
|
24 |
-
[-1, 1, SPPF, [1024, 5]], # 9
|
25 |
-
]
|
26 |
-
|
27 |
-
# YOLOv5 v6.0 head
|
28 |
-
head:
|
29 |
-
[[-1, 1, Conv, [512, 1, 1]],
|
30 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
31 |
-
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
32 |
-
[-1, 3, C3, [512, False]], # 13
|
33 |
-
|
34 |
-
[-1, 1, Conv, [256, 1, 1]],
|
35 |
-
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
36 |
-
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
37 |
-
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
38 |
-
|
39 |
-
[-1, 1, Conv, [256, 3, 2]],
|
40 |
-
[[-1, 14], 1, Concat, [1]], # cat head P4
|
41 |
-
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
42 |
-
|
43 |
-
[-1, 1, Conv, [512, 3, 2]],
|
44 |
-
[[-1, 10], 1, Concat, [1]], # cat head P5
|
45 |
-
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
46 |
-
|
47 |
-
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
48 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|