import gradio as gr import json from ultralyticsplus import YOLO, render_result # Model Heading and Description model_heading = "YOLOv8 NDL-DocL Datasets" description = """YOLOv8 NDL-DocL Datasets Gradio demo for object detection. Upload an image or click an example image to use.""" article = "
YOLOv5 NDL-DocL Datasets is an object detection model trained on the NDL-DocL Datasets.
" image_path= [ ['『源氏物語』(東京大学総合図書館所蔵).jpg', 0.25, 0.45], ['『源氏物語』(京都大学所蔵).jpg', 0.25, 0.45], ['『平家物語』(国文学研究資料館提供).jpg', 0.25, 0.45] ] # Load YOLO model model = YOLO('nakamura196/yolov8-ndl-layout') def yolov8_img_inference( image: gr.Image = None, conf_threshold: gr.Slider = 0.25, iou_threshold: gr.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ results = model.predict(image, conf=conf_threshold, iou=iou_threshold, device="cpu") render = render_result(model=model, image=image, result=results[0]) json_data = json.loads(results[0].tojson()) return render, json_data inputs_image = [ gr.Image(type="filepath", label="Input Image"), gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"), gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), ] outputs_image =[ gr.Image(type="filepath", label="Output Image"), gr.JSON(label="Output JSON") ] demo = gr.Interface( fn=yolov8_img_inference, inputs=inputs_image, outputs=outputs_image, title=model_heading, description=description, examples=image_path, article=article, cache_examples=False ) demo.launch(share=False)